Lifting the Exponent

Yan Yau Cheng

HKIMO Training Phase I Level 2 17 August, 2024

Definition (*p*-adic valuation). Let *p* be a prime number and *n* be an integer. We define $\nu_p(n)$, the *p*-adic valuation of *n*, to be the largest integer *k* such that $p^k|n$.

We may also write $p^k || n$ if $p^k |n$ and $p^{k+1} \nmid n$.

Theorem (Lifting the Exponent Lemma). Let p be an odd prime. Suppose that x, y are integers not divisible by p such that p|x-y, then:

$$\nu_p(x^n - y^n) = \nu_p(x - y) + \nu_p(n)$$

Theorem (LTE for p = 2). Let p = 2, let x, y be odd integers such that 4|x - y, then:

$$\nu_2(x^n - y^n) = \nu_2(x - y) + \nu_2(n)$$

Corollary. If n is an even integer and x, y are any odd integers, then:

$$\nu_2(x^n - y^n) = \nu_2(x - y) + \nu_2(x + y) + \nu_2(n) - 1$$

Selected Problems

- 1. Prove the Lifting the Exponent Lemma.
- 2. Find all positive integers a such that $\frac{5^a + 1}{3^a}$ is a positive integer.
- 3. Let k > 1 be an integer. Show that there exists infinitely many positive integers n such that

$$n|1^n + 2^n + 3^n + \dots + k^n$$

- 4. (CGMO 2017)
 - (a) Find all positive integers n such that for any odd integer a, we have $4 \mid a^n 1$
 - (b) Find all positive integers n such that for any odd integer a, we have $2^{2017} \mid a^n 1$
- 5. (India 2018) For a natural number k > 1, define S_k to be the set of all triplets (n, a, b) of natural numbers, with n odd and gcd(a, b) = 1, such that a + b = k and n divides $a^n + b^n$. Find all values of k for which S_k is finite.
- 6. (Indonesia 2010) Let n be a positive integer with $n = p^{2010}q^{2010}$ for two odd primes p and q. Show that there exist exactly $2^{2010}\sqrt{n}$ positive integers $x \le n$ such that $p^{2010}|x^p 1$ and $q^{2010}|x^q 1$.

- 7. (CWMI 2010) Suppose that m and k are non-negative integers, and $p = 2^{2^m} + 1$ is a prime number. Prove that
 - (a) $2^{2^{m+1}p^k} \equiv 1 \pmod{p^{k+1}};$
 - (b) $2^{m+1}p^k$ is the smallest positive integer *n* satisfying the congruence equation $2^n \equiv 1 \pmod{p^{k+1}}$.
- 8. (Romania 2024) Let n be a positive integer and let a and b be positive integers congruent to 1 modulo 4. Prove that there exists a positive integer k such that at least one of the numbers $a^k b$ and $b^k a$ is divisible by 2^n .
- 9. (Russia 1996) Find all natural numbers n, such that there exist relatively prime integers x and y and an integer k > 1 satisfying the equation $3^n = x^k + y^k$.
- 10. (Turkey 2024) Find all positive integer pairs (a, b) such that,

$$\frac{10^{a!} - 3^b + 1}{2^a}$$

is a perfect square.

- 11. (Balkan 2018) Find all primes p and q such that $3p^{q-1} + 1$ divides $11^p + 17^p$
- 12. (IMO 1990) Determine all integers n > 1 such that

$$\frac{2^n+1}{n^2}$$

is an integer.

13. (CMO 2018) Let n be a positive integer. Let A_n denote the set of primes p such that there exists positive integers a, b satisfying

$$\frac{a+b}{p}$$
 and $\frac{a^n+b^n}{p^2}$

are both integers that are relatively prime to p. If A_n is finite, let f(n) denote $|A_n|$.

- (a) Prove that A_n is finite if and only if $n \neq 2$.
- (b) Let m, k be odd positive integers and let d be their gcd. Show that

$$f(d) \le f(k) + f(m) - f(km) \le 2f(d).$$