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Vieta Jumping

Method: Given a solution to a diophantine equation, find a smaller
solution using Vieta's formulas.

Problem 1 (IMO 1988)

Let a and b be two positive integers such that ab + 1 divides a®> + b?.
2

Show that ——— s a perfect square.
ab+1 P 9

i 2,42 e
Main Idea: Suppose aabtrbl = k for some positive integer k.

If we fix a, then b satisfies the quadratic equation: x> — kax + a°> — k =0
We can find relations between the two roots of this quadratic equation and
the coefficients.
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IMO 1998 P6

WLOG a < b.

. L 2
Suppose k is a non-square, and a + b is minimal such that aberbl = k.

Let the two solutions to x? — kax + a> — k = 0 are b and b;. Then:
b+ by = ka
bby = a% — k

2 .
Thus by = ka— b= ﬂ, and must be a non-zero integer.

But by = 2% < b and (a, by) also satisfies 2 b +1 = k.
From zb++i = k we obtain that b; must be positive

This means we have found a smaller solution, contradicting the minimality
of a+ b.
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Vieta Jumping

Polynomials: Common Techniques

Bounding
Intermediate Value Theorem
Lagrange Interpolation

Vieta's Formulas

Expansion

Yan Yau Cheng Vieta Jumping and Polynomials 24 August, 2020 4/4



Vieta Jumping and Polynomials

Yan Yau Cheng

HKIMO Intensive Training

Vieta Jumping

Problem 1 (IMO 1988). Let a and b be two positive integers such that ab + 1 divides a® + b*. Show that

a® 4+ b?

ab+1

is a perfect square.
Problem 2. Let z and y be positive integers such that zy divides 22 + y? + 1. Show that ﬁ%y;“ =3.

Problem 3 (IMO 2007). Let a and b be positive integers. Show that if 4ab — 1 divides (4a® — 1), then

a=b.
Problem 4 (IMOSL 2017 N6). Find the smallest positive integer n or show no such n exists, with the
following property: there are infinitely many distinct n-tuples of positive rational numbers (a1, az, ..., ay)
such that both ) 1 i
a1+a2+...+an and i_i_i_i__l’_i
a1 ag Qp

are integers.

Polynomials

Problem 5 (Russia 2009). Find all value of n for which there are nonzero real numbers a, b, ¢, d such that
after expanding and collecting similar terms, the polynomial (ax + b)!%° — (cx + d)'°° has exactly n nonzero
coeflicients.

Problem 6 (Russia 2002). The polynomials P(x), Q(z), R(x) with real coefficients, one of which is degree
2 and two of degree 3, satisfy the equality P(x)? + Q(z)?> = R(x)?. Prove that one of the polynomials of
degree 3 has three real roots.

Problem 7 (Russia 2003). The side lengths of a triangle are the roots of a cubic polynomial with rational
coeflicients. Prove that the altitudes of this triangle are roots of a polynomial of sixth degree with rational
coefficients.

Problem 8 (Russia 2016). Let n be a positive integer and let ko, k1, .. ., k2, be nonzero integers such that
ko + k1 + -+ + ko, # 0. Is it always possible to find a permutation (ag, a1, ...,a2,) of (ko,k1,...,kan) so
that the equation

&2n$2n +(12n_1.132n_1 +--4ag= 0
has no integer roots?
Problem 9 (Russia 2013). Let P(x) and Q(z) be (monic) polynomials with real coefficients (the first

coefficient being equal to 1), and deg P(z) = deg Q(x) = 10. Prove that if the equation P(z) = Q(x) has no
real solutions, then P(x 4+ 1) = Q(x — 1) has a real solution.

Problem 10 (USAMO 2002). Prove that any monic polynomial (a polynomial with leading coefficient 1)
of degree n with real coefficients is the average of two monic polynomials of degree n with n real roots.

Problem 11 (IMO 2016). The equation
(x—1)(xz—2)-(x—2016) = (x — 1)(z — 2) - - - (x — 2016)

is written on the board, with 2016 linear factors on each side. What is the least possible value of k£ for which
it is possible to erase exactly k of these 4032 linear factors so that at least one factor remains on each side
and the resulting equation has no real solutions?

Problem 12 (IMO 2006). Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be
a positive integer. Consider the polynomial Q(z) = P(P(...P(P(x))...)), where P occurs k times. Prove
that there are at most n integers ¢ such that Q(¢t) = t¢.



