Vieta Jumping and Polynomials

Yan Yau Cheng

HKIMO Intensive Training
24 August, 2020

Vieta Jumping

Method: Given a solution to a diophantine equation, find a smaller solution using Vieta's formulas.

Problem 1 (IMO 1988)
Let a and b be two positive integers such that $a b+1$ divides $a^{2}+b^{2}$.
Show that $\frac{a^{2}+b^{2}}{a b+1}$ is a perfect square.
Main Idea: Suppose $\frac{a^{2}+b^{2}}{a b+1}=k$ for some positive integer k. If we fix a, then b satisfies the quadratic equation: $x^{2}-k a x+a^{2}-k=0$ We can find relations between the two roots of this quadratic equation and the coefficients.

IMO 1998 P6

WLOG $a \leq b$.
Suppose k is a non-square, and $a+b$ is minimal such that $\frac{a^{2}+b^{2}}{a b+1}=k$.
Let the two solutions to $x^{2}-k a x+a^{2}-k=0$ are b and b_{1}. Then:
$\left\{\begin{array}{l}b+b_{1}=k a \\ b b_{1}=a^{2}-k\end{array}\right.$
Thus $b_{1}=k a-b=\frac{a^{2}-k}{b}$, and must be a non-zero integer.
But $b_{1}=\frac{a^{2}-k}{b}<b$ and $\left(a, b_{1}\right)$ also satisfies $\frac{a^{2}+b_{1}^{2}}{a b_{1}+1}=k$.
From $\frac{a^{2}+b_{1}^{2}}{a b_{1}+1}=k$ we obtain that b_{1} must be positive
This means we have found a smaller solution, contradicting the minimality of $a+b$.

Polynomials: Common Techniques

- Bounding
- Intermediate Value Theorem
- Lagrange Interpolation
- Vieta's Formulas
- Expansion

Vieta Jumping and Polynomials

Yan Yau Cheng

HKIMO Intensive Training

Vieta Jumping

Problem 1 (IMO 1988). Let a and b be two positive integers such that $a b+1$ divides $a^{2}+b^{2}$. Show that $\frac{a^{2}+b^{2}}{a b+1}$ is a perfect square.
Problem 2. Let x and y be positive integers such that $x y$ divides $x^{2}+y^{2}+1$. Show that $\frac{x^{2}+y^{2}+1}{x y}=3$.
Problem 3 (IMO 2007). Let a and b be positive integers. Show that if $4 a b-1$ divides $\left(4 a^{2}-1\right)^{2}$, then $a=b$.

Problem 4 (IMOSL 2017 N6). Find the smallest positive integer n or show no such n exists, with the following property: there are infinitely many distinct n-tuples of positive rational numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that both

$$
a_{1}+a_{2}+\cdots+a_{n} \quad \text { and } \quad \frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}
$$

are integers.

Polynomials

Problem 5 (Russia 2009). Find all value of n for which there are nonzero real numbers a, b, c, d such that after expanding and collecting similar terms, the polynomial $(a x+b)^{100}-(c x+d)^{100}$ has exactly n nonzero coefficients.

Problem 6 (Russia 2002). The polynomials $P(x), Q(x), R(x)$ with real coefficients, one of which is degree 2 and two of degree 3, satisfy the equality $P(x)^{2}+Q(x)^{2}=R(x)^{2}$. Prove that one of the polynomials of degree 3 has three real roots.
Problem 7 (Russia 2003). The side lengths of a triangle are the roots of a cubic polynomial with rational coefficients. Prove that the altitudes of this triangle are roots of a polynomial of sixth degree with rational coefficients.
Problem 8 (Russia 2016). Let n be a positive integer and let $k_{0}, k_{1}, \ldots, k_{2 n}$ be nonzero integers such that $k_{0}+k_{1}+\cdots+k_{2 n} \neq 0$. Is it always possible to find a permutation $\left(a_{0}, a_{1}, \ldots, a_{2 n}\right)$ of $\left(k_{0}, k_{1}, \ldots, k_{2 n}\right)$ so that the equation

$$
a_{2 n} x^{2 n}+a_{2 n-1} x^{2 n-1}+\cdots+a_{0}=0
$$

has no integer roots?
Problem 9 (Russia 2013). Let $P(x)$ and $Q(x)$ be (monic) polynomials with real coefficients (the first coefficient being equal to 1), and $\operatorname{deg} P(x)=\operatorname{deg} Q(x)=10$. Prove that if the equation $P(x)=Q(x)$ has no real solutions, then $P(x+1)=Q(x-1)$ has a real solution.
Problem 10 (USAMO 2002). Prove that any monic polynomial (a polynomial with leading coefficient 1) of degree n with real coefficients is the average of two monic polynomials of degree n with n real roots.
Problem 11 (IMO 2016). The equation

$$
(x-1)(x-2) \cdots(x-2016)=(x-1)(x-2) \cdots(x-2016)
$$

is written on the board, with 2016 linear factors on each side. What is the least possible value of k for which it is possible to erase exactly k of these 4032 linear factors so that at least one factor remains on each side and the resulting equation has no real solutions?
Problem 12 (IMO 2006). Let $P(x)$ be a polynomial of degree $n>1$ with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x)=P(P(\ldots P(P(x)) \ldots))$, where P occurs k times. Prove that there are at most n integers t such that $Q(t)=t$.

