Arithmetic Functions

Yan Yau Cheng
HKIMO Training Level 2
21 September, 2019

1 Arithmetic Functions

Definition 1 (Arithmetic Function). An Arithmetic function is a function $\mathbb{N} \rightarrow \mathbb{C}$ which"expresses some arithmetical property of n " (Hardy \& Wright)

Definition 2 (Multiplicative Functions). An arithmetic function f is multiplicative if for any coprime $m, n \in \mathbb{N}, f(m n)=f(m) f(n)$.
If the above condition is true for ALL (not necessarily coprime) m, n, then we call f completely multiplicative.

1.1 Sigma Functions

Definition 3. For some x, define $\sigma_{x}(n)$ to be the sum of the x th powers of all divisors of n :

$$
\sigma_{x}(n)=\sum_{d \mid n} d^{x}
$$

In particular, the $\sigma_{0}(n)$ is the number of positive divisors of n, and is often denoted by $\tau(n) . \sigma_{1}$ is often written as simply σ

Question 1. Show that σ_{x} is multiplicative.
Question 2. If n has prime factorisation $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$. Find $\sigma_{x}(n)$ in terms of p_{i}, α_{i}.
Question 3. Express $\tau(n)$ in terms of α_{i}.

1.2 Euler Totient Function

Definition 4 (Euler Totient Function). The Euler Totient Function $\varphi(n)$ gives the number of positive integers less than or equal to n that are coprime to n.

Question 4. Show that φ is multiplicative.
Question 5. If n has prime factorisation $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$. Find $\varphi(n)$ in terms of p_{i}, α_{i}.
Question 6. By considering the fractions $\frac{1}{n}, \frac{2}{n}, \cdots \frac{n}{n}$, show that:

$$
\sum_{d \mid n} \varphi(d)=n
$$

2 Dirichlet Convolution

2.1 Motivation

If we have 2 sequences $\left(a_{n}\right),\left(b_{n}\right)$, with generating functions: $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ and $B(x)=$ $b_{0}+b_{1} x+b_{2} x^{2}+\cdots$, if we multiply these 2 generating functions, we obtain:
$A(x) B(x)=C(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots$
Where: $c_{k}=\sum_{i=0}^{n} a_{i} b_{n-i}$
We say that $\left(c_{n}\right)$ is the convolution of the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$

2.2 Dirichlet Convolutions

If we consider a new kind of generating function (called a Dirichlet Generating Function), defined for an arithmetic function f by:

$$
\sum_{n>0} \frac{f(n)}{n^{s}}=\frac{f(1)}{1^{s}}+\frac{f(2)}{2^{s}}+\cdots
$$

If we consider the product of two Dirichlet Generating Functions, of arithmetic functions f, g :

$$
\left(\frac{f(1)}{1^{s}}+\frac{f(2)}{2^{s}}+\cdots\right)\left(\frac{g(1)}{1^{s}}+\frac{g(2)}{2^{s}}+\cdots\right)=\left(\frac{h(1)}{1^{s}}+\frac{h(2)}{2^{s}}+\cdots\right)
$$

Then h is the Dirichlet Convolution of f and g, denoted by $h=f * g$, and

$$
(f * g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)=\sum_{a b=n} f(a) g(b)
$$

Definition 5 (1 function). Define the function $1: \mathbb{N} \rightarrow \mathbb{N}$, where $1(n)=1$ for each n.
Example 7. $(1 * \varphi)(n)=n$
Definition 6 (Möbius function). Define the function μ, where:

$$
\mu(n)= \begin{cases}+1 & \text { if } n \text { is a square-free positive integer with an even number of prime factors. } \\ -1 & \text { if } n \text { is a square-free positive integer with an odd number of prime factors. } \\ 0 & \text { if } n \text { has a squared prime factor. }\end{cases}
$$

Question 8. Find $1 * \mu$
Problem 9. Show that if f and g are multiplicative, then $f * g$ is also multiplicative.

3 Möbius Inversion

3.1 Motivation

If we have functions f and g satisfying $g(n)=\sum_{k=0}^{n} f(k)$ for each n. We can find f in terms of g by: $f(n)=g(n)-g(n-1)$.
However, in Number Theory, there are often functions f and g that are related through a relation such as $g(n)=\sum_{d \mid n} f(d)$ for each n. How can we express f in terms of g in this case?

3.2 Möbius Inversion Formula

Notice that if $g(n)=\sum_{d \mid n} f(d)$, then $1 * f=g$.
From Question $\left[8\right.$ we know that $(1 * \mu)(n)=\left\{\begin{array}{ll}1 & \text { if } n=1 \\ 0 & \text { otherwise }\end{array}\right.$. i.e.

$$
\left(\sum_{n>0} \frac{1}{n^{s}}\right)\left(\sum_{n>0} \frac{\mu(n)}{n^{s}}\right)=1
$$

So:

$$
\begin{aligned}
\left(\sum_{n>0} \frac{f(n)}{n^{s}}\right)\left(\sum_{n>0} \frac{1(n)}{n^{s}}\right) & =\left(\sum_{n>0} \frac{g(n)}{n^{s}}\right) \\
\left(\sum_{n>0} \frac{f(n)}{n^{s}}\right) & =\left(\sum_{n>0} \frac{g(n)}{n^{s}}\right)\left(\sum_{n>0} \frac{\mu(n)}{n^{s}}\right) \\
f=g * \mu &
\end{aligned}
$$

Thus, we have the Möbius Inversion Formula:
Theorem 1 (Möbius Inversion Formula). If f and g are functions such that $g(n)=\sum_{d \mid n} f(d)$ for each $n \in \mathbb{N}$, then

$$
f(n)=\sum_{d \mid n} g(d) \mu\left(\frac{n}{d}\right)
$$

Question 10. What is $1 * 1$?
Question 11. What is $\tau * \mu$?
Question 12. What is $\operatorname{Id} * 1$? (Id is the identity function: $\operatorname{Id}(n)=n$)
Question 13. What is $\sigma * \mu$?

4 Selected Problems

Problem 14. Prove that for all $n: \sigma(n)+\varphi(n) \geq 2 n$
Problem 15 (Slovakia, 2017). Find all natural n for which $\varphi(n) \mid\left(n^{2}+3\right)$.
Problem 16 (Bulgaria, 2019). For a natural number n we denote with $\tau(n)$ the number of all natural divisors of n. Find all numbers n for which, if $1=d_{1}<d_{2}<\ldots<d_{k}=n$ are all natural divisors of n, then: $\tau\left(d_{1}\right)+\tau\left(d_{2}\right)+\ldots+\tau\left(d_{k}\right)=\tau\left(n^{3}\right)$ holds.

Problem 17 (CHKMO, 2018). Let k be a positive integer. Prove that there exists a positive integer ℓ with the following property: if m and n are positive integers relatively prime to ℓ such that $m^{m} \equiv n^{n}(\bmod \ell)$, then $m \equiv n(\bmod k)$.

Problem 18 (IMOSL 2000 N2). For a positive integer n, let $d(n)$ be the number of all positive divisors of n. Find all positive integers n such that $d(n)^{3}=4 n$.

Problem 19 (IMOSL 2016 N2). Let $\tau(n)$ be the number of positive divisors of n. Let $\tau_{1}(n)$ be the number of positive divisors of n which have remainders 1 when divided by 3 . Find all positive integral values of the fraction $\frac{\tau(10 n)}{\tau_{1}(10 n)}$.

Problem 20 (IMOSL 2018 N1). Determine all pairs (m, n) of positive integers for which there exists a positive integer s such that $s m$ and $s n$ have an equal number of divisors.

