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1 Arithmetic Functions

Definition 1 (Arithmetic Function). An Arithmetic function is a function N→ C which “expresses some
arithmetical property of n” (Hardy & Wright)

Definition 2 (Multiplicative Functions). An arithmetic function f is multiplicative if for any coprime
m,n ∈ N, f(mn) = f(m)f(n).

If the above condition is true for ALL (not necessarily coprime) m,n, then we call f completely multi-
plicative.

1.1 Sigma Functions

Definition 3. For some x, define σx(n) to be the sum of the xth powers of all divisors of n:

σx(n) =
∑
d|n

dx

In particular, the σ0(n) is the number of positive divisors of n, and is often denoted by τ(n). σ1 is often
written as simply σ

Question 1. Show that σx is multiplicative.

Question 2. If n has prime factorisation n = pα1
1 pα2

2 · · · p
αk

k . Find σx(n) in terms of pi, αi.

Question 3. Express τ(n) in terms of αi.

1.2 Euler Totient Function

Definition 4 (Euler Totient Function). The Euler Totient Function ϕ(n) gives the number of positive
integers less than or equal to n that are coprime to n.

Question 4. Show that ϕ is multiplicative.

Question 5. If n has prime factorisation n = pα1
1 pα2

2 · · · p
αk

k . Find ϕ(n) in terms of pi, αi.

Question 6. By considering the fractions 1
n ,

2
n , · · ·

n
n , show that:

∑
d|n

ϕ(d) = n

1
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2 Dirichlet Convolution

2.1 Motivation

If we have 2 sequences (an), (bn), with generating functions: A(x) = a0 + a1x + a2x
2 + · · · and B(x) =

b0 + b1x+ b2x
2 + · · · , if we multiply these 2 generating functions, we obtain:

A(x)B(x) = C(x) = c0 + c1x+ c2x
2 + · · ·

Where: ck =

n∑
i=0

aibn−i

We say that (cn) is the convolution of the sequences (an) and (bn)

2.2 Dirichlet Convolutions

If we consider a new kind of generating function (called a Dirichlet Generating Function), defined for an
arithmetic function f by:

∑
n>0

f(n)

ns
=
f(1)

1s
+
f(2)

2s
+ · · ·

If we consider the product of two Dirichlet Generating Functions, of arithmetic functions f, g:(
f(1)

1s
+
f(2)

2s
+ · · ·

)(
g(1)

1s
+
g(2)

2s
+ · · ·

)
=

(
h(1)

1s
+
h(2)

2s
+ · · ·

)
Then h is the Dirichlet Convolution of f and g, denoted by h = f ∗ g, and

(f ∗ g)(n) =
∑
d |n

f(d) g
(n
d

)
=

∑
ab=n

f(a) g(b)

Definition 5 (1 function). Define the function 1 : N→ N, where 1(n) = 1 for each n.

Example 7. (1 ∗ ϕ)(n) = n

Definition 6 (Möbius function). Define the function µ, where:

µ(n) =


+1 if n is a square-free positive integer with an even number of prime factors.

−1 if n is a square-free positive integer with an odd number of prime factors.

0 if n has a squared prime factor.

Question 8. Find 1 ∗ µ

Problem 9. Show that if f and g are multiplicative, then f ∗ g is also multiplicative.
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3 Möbius Inversion

3.1 Motivation

If we have functions f and g satisfying g(n) =

n∑
k=0

f(k) for each n. We can find f in terms of g by:

f(n) = g(n)− g(n− 1).

However, in Number Theory, there are often functions f and g that are related through a relation such as

g(n) =
∑
d|n

f(d) for each n. How can we express f in terms of g in this case?

3.2 Möbius Inversion Formula

Notice that if g(n) =
∑
d|n

f(d), then 1 ∗ f = g.

From Question 8 we know that (1 ∗ µ)(n) =

{
1 if n = 1

0 otherwise
. i.e.

(∑
n>0

1

ns

)(∑
n>0

µ(n)

ns

)
= 1

So: (∑
n>0

f(n)

ns

)(∑
n>0

1(n)

ns

)
=

(∑
n>0

g(n)

ns

)
(∑
n>0

f(n)

ns

)
=

(∑
n>0

g(n)

ns

)(∑
n>0

µ(n)

ns

)
f = g ∗ µ

Thus, we have the Möbius Inversion Formula:

Theorem 1 (Möbius Inversion Formula). If f and g are functions such that g(n) =
∑
d|n

f(d) for each n ∈ N,

then
f(n) =

∑
d|n

g(d)µ
(n
d

)

Question 10. What is 1 ∗ 1?

Question 11. What is τ ∗ µ?

Question 12. What is Id ∗1? (Id is the identity function: Id(n) = n)

Question 13. What is σ ∗ µ?
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4 Selected Problems

Problem 14. Prove that for all n: σ(n) + ϕ(n) ≥ 2n

Problem 15 (Slovakia, 2017). Find all natural n for which ϕ(n)|(n2 + 3).

Problem 16 (Bulgaria, 2019). For a natural number n we denote with τ(n) the number of all natural
divisors of n. Find all numbers n for which, if 1 = d1 < d2 < ... < dk = n are all natural divisors of n, then:
τ(d1) + τ(d2) + ...+ τ(dk) = τ(n3) holds.

Problem 17 (CHKMO, 2018). Let k be a positive integer. Prove that there exists a positive integer ` with
the following property: if m and n are positive integers relatively prime to ` such that mm ≡ nn (mod `),
then m ≡ n (mod k).

Problem 18 (IMOSL 2000 N2). For a positive integer n, let d(n) be the number of all positive divisors of
n. Find all positive integers n such that d(n)3 = 4n.

Problem 19 (IMOSL 2016 N2). Let τ(n) be the number of positive divisors of n. Let τ1(n) be the number
of positive divisors of n which have remainders 1 when divided by 3. Find all positive integral values of the

fraction
τ(10n)

τ1(10n)
.

Problem 20 (IMOSL 2018 N1). Determine all pairs (m,n) of positive integers for which there exists a
positive integer s such that sm and sn have an equal number of divisors.
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