Key
2023/03/03 Talk Plan

- To wite
- To say
- Supplematiog Notes

Intro: In the 60s Bury Mazur pointed out knots in 3-bld are andogaus to primes in Number Field.

- Goal of today is to show snippets of this analogy.
- For now this analogy is simply motivational, cant prove NT uarlts from marking w/ primes.

Agenda
(1) Cora ponders between Knits \& Primes
(2) Decomposition of Knits \& Primes
(3) Linking numbers and the Power Residue Symbol
(4) Higher linking numbers of Knots \& Primes.
$\xi 1:$ Knots and primes

M : Compact 3-manifold, say $M=s^{3}$
$\pi_{1}\left(s^{3}\right)=1$

$K_{\text {not }} K: S^{\prime} \hookrightarrow M$

$$
\pi_{1}(k) \cong \pi_{1}\left(s^{\prime}\right)=\mathbb{Z}
$$

$\longleftrightarrow P_{\text {rime id al }} p \triangleleft \theta_{k}, \quad S_{p e c} \mathbb{F}_{p} \longrightarrow S_{p e c} \theta_{k}$

$$
\pi_{1}\left(S_{\text {pec }} \mathbb{F}_{p}\right)=G_{a}\left(\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right)=\hat{\mathbb{Z}}\right.
$$

$K_{\text {not }} G$ roup $\pi_{1}(M, K) \longleftrightarrow$ Gabis grum unzami ied at side $p \quad \pi$. $\left(K_{p e c} \theta_{k} \backslash \backslash\right)$
M\K not compact, instead we can remove a tubate neighberntioad of M.
V_{K} : tabular ngbed of K

$$
\pi_{1}\left(V_{k}\right) \leqq \pi_{1}\left(s^{\prime}\right)=\mathbb{Z}
$$

∂V_{k} bandary of V_{k}

$$
\pi_{1}\left(v_{k}\right) \cong \pi\left(s^{\prime} \times s^{\prime}\right)=\mathbb{Z}^{2}=\langle\alpha, \beta \mid[\alpha, \beta]\rangle
$$

$\pi_{1}\left(s_{\text {pec }} k_{p}\right)$ hard t_{0} colcable, instead have tame quotient

$$
\left.\pi_{1}^{t}\left(s_{\text {pec }} K_{p}\right)=\langle\sigma, \tau| \tau^{p-1}[\tau, \sigma]=1\right)
$$

σ froberius, τ monodrung. Will elaborate a little mot later.
§2 Decomposition of Knots and Primes
\$2.1 knots
Defn (Ramitial Covering Space)
Let $L=L_{1} H L_{2} H \cdots H L_{s} \hookrightarrow M$ ben link, a cts map $f: N \rightarrow M$ is a ramified covering aver L if:

- $\left.f\right|_{N f^{-1}(L)}: N \backslash f^{-1}(L) \longrightarrow M \backslash L$ is a covering map
- For each $y \in f^{-1}(L), \exists$ ngbds $D^{2} \times I \cong U \partial y, D^{2} \times I \cong V \ni f(y)$, st $f_{*}: U \rightarrow V$ is $\left(z \leftrightarrow z^{e}\right) \times i d$
${ }^{\text {identifying }} D^{2} \cong\{|z| \leq 1\} \leq C$
This is like ramification of Riemann Surfoos, have ramification over a co-dimanson 2 submonifold so inturivily the map is "wrapping" around the submanifled e is fired for each component link L_{i}, we call this the zomifiation degree of L_{i}

Let $X:=M \mid L, Y:=N \backslash \Gamma^{-1}(L)$, let $G:=G_{a l}\left(M / s^{3}\right)=G_{a l}(Y / X)$ ie this is the Quotient of $\pi_{1}\left(s^{3} / L\right)$ that corresponds to the covering space $N \backslash f^{-1}(L)$
Let K be a $k n o t$ in M that is either a compoonel $f L$ or disjoint $t . L$. V_{K} tubular ngbd.
$f^{-1}(k)$ will be link in N, say $f^{-1}(k)=K . \cup \cdots \cup k_{r}$, $V_{k: ~ t h e ~ c o m p o n e n t ~ o f ~} f^{\prime}\left(V_{k}\right)$ containing $k i$
Pick a basepoint $x \in \partial V_{k}$, then G acts on $f^{-1}(x)=\left\{y_{1}, \cdots, y_{n}\right\}$, where $n=\# G . x \notin L$
G acts $t_{\text {transitively }}$ on $f^{-1}(x) \Rightarrow G$ acts transitively on $\partial k_{1}, \cdots, \partial k$. and thus $k_{1}, \cdots, k_{\text {r }}$
We define the stabiliser of $K_{i} t_{0}$ be the decomposition group
Decomposition Group: $D_{k_{i}}:=\left\{g \in G \mid g\left(k_{i}\right)=k_{i}\right\}$

The decomposition groups are all conjugate to each other:
If $g\left(k_{i}\right)=k_{j}$, then $D_{k_{j}}=g D_{k_{i}} g^{-1}$.
Moreover, g incluas a homeomorphism of tabular boundaries

$$
g l_{\partial v_{k_{i}}}: \partial V_{k_{i}} \xrightarrow{\sim} \partial V_{k_{j} .} .
$$

In particular for $g \in D_{K_{i}}, g \mapsto g l_{\partial V_{k i}}$ gives a covering space automorphism of $\partial V_{K_{i}}$ and induces an isomorphism:
$D_{k_{i}} \cong G_{a l}\left(\partial k_{i} / \partial k\right)$. This is a cur of a torus, is generated by α and β.

The map $g \mapsto g k_{k i}$ indues a homomorphism:

$$
D_{k_{i}} \longrightarrow \operatorname{Gal}_{\text {al }}\left(\mathrm{K}_{\mathrm{i}} / \mathrm{K}\right)
$$

Define the inertia group $I_{k_{i}} t_{0}$ be the kernel of this homomorphism.
Meridians get sent to the identity, so $I_{k_{i}}$ is generated by α.
Again $I_{k_{i}} \& I_{k_{j}}$ are conjugate.

Upshot: We can understand $D_{k_{i}}$ and $I_{k_{i}}$ by looking at how they act on $f^{-1}(x)$.
Fix x_{01}^{i} a point in $f^{-1}(x) \cap \partial V_{k_{i} .}$ Let the orbit of x_{01}^{i} under \propto be $\left\{x_{\ldots}, x_{1,1}, \cdots, x_{o c}\right\}$.
Then \# $I_{k_{i}}=e$, the ramification degree.
Define $x_{m n}=\beta^{m} \cdot x_{0 n}$, and define $f t$ be the minimal m sit $x_{f}, \in\left\{x_{01}, \cdots, x_{0 e}\right\}$.
f is the covering degree of k_{i} over k.

$$
e f=\left|f^{-1}(x) \cap \partial k_{i}\right|
$$

Then we have: $e f r=n=\# G$.

Some special cases:

$$
\begin{aligned}
& D_{k_{i}}=1 \Longleftrightarrow e=f=1, r=n \quad K \text { decomposes complttly. } \\
& D_{k_{i}}=G \Longleftrightarrow e f=n, r=1 \\
& I_{k_{i}}=1 \Leftrightarrow e=1, f r=n \\
& I_{k_{i}}=G \Leftrightarrow e=n, f=r=1 \quad K \text { totally ramified }
\end{aligned}
$$

§2.2 Primes
Def (Ramification of a prime)
Let L / K be a finite extension of number fields. p a prime ideal of θ_{k}.
$p \theta_{l}$ is an ideal in θ_{l}, but not necessarily prime.
O_{l} Dedekind domain so has unique prime factorisation

$$
p \theta_{l}=P_{1}^{e_{1}} \cdots P_{r}^{e_{r}} \quad P_{i} \cap \theta_{K}=p
$$

P is unzamified in L if $e_{i}=1 \quad V_{i}$. e_{i} is the ramification degree of P_{i}
Quotienting induces an ertorsens of resiche fields: Let $f_{i}=\left[\theta_{L} / P_{i}: \theta_{k} / p\right]$, then if $\theta_{k} / p=\mathbb{F}_{P}, \theta_{l} / P_{i}=\mathbb{F}_{p} f$. f_{i} is called the reside degree of $P:$

Theorem: $\sum e_{i} f_{i}=[L: K]=n \quad$ Proof omitted, quite indued.

Suppose now that L / k is Galois, then $G a l(L / k)$ acts transitively on $\left\{P_{1}, \cdots, P_{r}\right\} P f$ omitted
Then for $\sigma \in G_{a}(L / k)$:

$$
\begin{aligned}
p \theta_{L}=\sigma(p) \theta_{L}=\sigma\left(p_{1}\right)^{e_{1}} \sigma\left(p_{2}\right)^{e_{2}} \cdots \sigma\left(p_{r}\right)^{e_{r}} & \Rightarrow e_{1}=e_{2}=\cdots=e_{r}=e \\
& \Rightarrow \theta_{L} / p_{i} \cong \theta_{L} / \sigma\left(p_{i}\right) \\
& \Rightarrow f_{1}=f_{2}=\cdots=f_{r}=f \\
& \Rightarrow e f_{r}=n
\end{aligned}
$$

Decomposition group: Stabiliser of P_{i}
$D_{P_{i}}=\left\{\sigma \in G_{a}(l / L) \mid \sigma\left(P_{i}\right)=P_{i}\right\} \quad$ Note again that the decomposition gramps are conjugate.
By orbit-stabiliser: $D_{p:}$ has order eff.
Fixing a $P_{i}, \quad D_{p i} \cong G_{a l}\left(L_{p_{i}} / k_{p}\right)$.
Moreover: $\quad \sigma \longmapsto\left(\bar{\sigma}: \alpha \bmod P_{i} \mapsto \sigma(\alpha) \bmod P_{i}\right)$ defines a surjective map: Surjectionty not obvious, but proof omitted.

$$
D_{P_{i}} \cong G_{a}\left(\mid L_{P i} / k_{p}\right) \longrightarrow G_{a l}\left(\mathbb{F}_{P^{t}} / \mathbb{F}_{p}\right) \text { cydic of order } f \text {, generated by fobemiss. }
$$

We define $I_{P_{i}} t_{0}$ be the kernel of this map. Then $\left|I_{P_{i}}\right|=e$ Inertia groups are conjugate.
Special Cases:

$$
\begin{aligned}
& D_{P_{i}}=1 \Longleftrightarrow e=f=1, r=n \quad p \text { decomposes completely. } \\
& D_{P_{i}}=G \Longleftrightarrow e f=n, r=1 \\
& I_{p_{i}}=1 \Leftrightarrow e=1, f r=n \\
& I_{p_{i}}=G \Longleftrightarrow e=n, f=r=1 \quad p \text { totally ramified }
\end{aligned}
$$

Extra complexity in prime case: $D_{K_{i}}$ is quotient of \mathbb{Z}^{2} so always abelian, but $D_{p_{i}}$ is generally non-abelion. $I_{K_{i}}$ is cyclic and generated by $\alpha, I_{P_{i}}$ not necessarily cydic (only addie it L_{p} / K_{p} is tame)
§3. Linking numbers and Power Residue Symbds
§3.1 Linking numbers
Let K_{1}, K_{2} be kans in S^{3}. Wikipedia sags link ing nouber might be fractional or undefined in other 3 -folds, but I cain find any source/eroaple of this? How do we define linking number? Intuitively, t is the number of times a knot "wops around" the other knot, but Additionally also need to orient k_{1}, k_{2}

The meridian also vips azund K_{1}, so we con relate the two:

$$
x:=s^{3} \operatorname{iat}\left(\partial v_{k}\right)
$$

Consider $G_{k_{1}}=\pi_{1}\left(s^{3} k_{1}\right)$ and α be a meridian of k_{1}.
There is a surjective map $\psi_{\infty}: G_{k_{1}} \longrightarrow \mathbb{Z}$ that sends $\alpha t_{0} \mid \in \mathbb{Z}$.
Why clos ψ_{∞} exit?. $H_{1}(G) \cong G /[G, G] \cong\langle\alpha\rangle$, so send $\alpha \mapsto 1$.
Let X_{∞} be the covering space of X corresponding to jer ψ_{∞}.
ie $\operatorname{Gol}_{\mathrm{o}}\left(\mathrm{x}_{\infty} / \mathrm{x}\right) \cong \mathrm{d}$.

Xe looks like:

| $\ldots .$. | Y_{-1} | Y_{0} | y_{k} | Y_{1} | Y_{2} | $\ldots-Y_{l}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Each Y_{i} is X cut along a surface, this surface is called the Safer surface. Seifert Surface: Oriented surface S such that $\partial S=k$.
Can think about \mathbb{R} as a covering of S^{\prime}, we "cat" S ' at a point oud gre ∞ copies together.

Existence first proven by Frank and Pontzagin Algorithm for construction given by Saitert.

Proposition:
Have map $\left.\rho_{\infty}: G_{k_{1}}=\pi_{1} / s^{3} \backslash k_{1}\right) \longrightarrow G_{a}\left(\left(x_{\infty} / x\right) \cong \mathbb{Z}\right.$
Suppose τ geverats $G_{a l}\left(x_{\infty} / x\right)$, the mop sending $Y_{i} \hbar Y_{i+1}$. and pick besept of π_{1} so that basest on K_{2}.
Then: $\quad P_{\infty}\left(\left[K_{2}\right]\right)=\tau^{l k\left(K_{1}, K_{2}\right)}$

PF: Consider a lift \tilde{K} of the path $K_{2} \quad X_{\infty}$, so that lift starts at Y_{0}.
Then the path moving from $Y_{i} \in Y_{i \pm 1}$ indicate the linking number changing by ± 1 So if \tilde{K} ends at Y_{ℓ}, then $l=l_{k}\left(k_{1}, K_{2}\right)$,
$p_{\infty}\left(\left[K_{1}\right]\right)\left(y_{0}\right) \in Y_{L}, \therefore p_{0}\left(\left[K_{l}\right]\right)$ mist also must cincicile wd the map in $G_{0}\left(\left(x_{0} / x\right)\right.$ sending $Y_{0} \hbar Y_{l}$.

$$
\left.\Rightarrow \operatorname{Pad}\left[k_{2}\right]\right)=\tau^{l}
$$

For Primes the analogous result is considerably weaker, so first I state weaker version of knot result.
If we compose ψ_{∞} with quotient map $\mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ and call this map ψ_{n}, define X_{n} and $p_{n}: G_{k_{1}} \rightarrow G a l\left(X_{n} / x\right) \cong \mathbb{Z} / n \boldsymbol{Z}$ analionosly.
Then: $p_{n}:\left[k_{2}\right] \mapsto l k\left(k_{1}, k_{2}\right) \bmod n$

Relation to decomposition:
The linking of k_{1} and K_{2} ulatess to the decomposition of k_{2} over a cyclic covering of $M K_{1}$, or cyclic covering of M ramified over K_{1}.
Let $h_{2}: x_{2} \rightarrow X$ be the covering map, then:

$$
h_{2}^{-1}\left(k_{2}\right)= \begin{cases}2 \text { disjoint } k_{\text {nuts }} & \text { if } l k\left(k_{1}, k_{2}\right) \equiv 0 \bmod 2 \\ 1 \text { big } k_{\text {not }} & \text { if } l k\left(k_{1}, k_{2}\right) \equiv 1 \text { mad } 2\end{cases}
$$

In fact: the number of components that K_{2} splits int in X_{n} is determined by $\operatorname{gcd}\left(\ell k\left(k_{1}, k_{2}\right), n\right)$
K_{2} unzamified $\Rightarrow f_{r}=n$
$f=$ order f element in $\operatorname{Gal}\left(X_{N} / X\right)$ corresponding to longitude of k_{2}.

$$
=\operatorname{ords} \delta \quad \sigma=p\left(\left[k_{2}\right]\right)=\tau^{\ell k(l, k)}
$$

§3.2 Legendre Symbol We work back words
Let $p-q \equiv 1 \bmod 4$. There is a unique quadratic ettumen of Q that is rainirid only at q, which's $K=Q(\sqrt{q}), \quad \theta_{k}=\mathbb{Z}[(1+\sqrt{q}) / 2]$ p is unzamified in $Q(\sqrt{q})$, so the frobenises map at p lifts uniquely to a map $\sigma_{p} \in G o l(K / Q)$
The decomposition $g_{p} D_{p}$ is generated by $o_{p} . \therefore f=$ order of σ_{p}

We define the linking number mod 2 to be:

$$
l k_{2}(p, q)=\left\{\begin{array}{ll}
0 & p \text { splits in } k
\end{array} \Leftrightarrow \sigma_{p}\right. \text { is the identity }
$$

$$
\begin{aligned}
l k_{2}(q, p)=0 & \Leftrightarrow \sigma_{p}=i d_{k} \\
& \Leftrightarrow \sigma_{p}(\sqrt{q})=\sqrt{q} \quad \text { I } \\
& \Leftrightarrow \sqrt{q} \in \mathbb{F}_{p}^{*} \quad \text { Ide mod } \\
& \Leftrightarrow q \in\left(\mathbb{F}_{p}^{*}\right)^{2} \\
& \Leftrightarrow q \text { is a Quadratic Residue male } \\
& \Leftrightarrow\left(\frac{q}{p}\right)=1 \\
\therefore \quad(-1)^{l k_{1}(q, p)} & =\left(\frac{q}{p}\right)
\end{aligned}
$$

So the Legendre symbol gives the mod 2 linking number
This can be generalised to mod n linking numbers, but the base field reds to contain then nth rats of amity.
In this case the mod n linking member co-inectes with the power residue symbol.
§4. Higher linking numbers
Very brief overview, almost all details outta.
Motivation: Bozromean Rings

Any 2 knots are unlinked, but all 3 of them are linked.
Milnor inuriants made to detect this

Idem.: Given K_{1}, \cdots, K_{n}, constunct a covering that is ramified over K_{1}, \cdots, K_{n-1}

- Galois group generated by meridians
- Linking of k_{1}, \cdots, k_{n} depends on the decmposituof K_{n}, given by order of lagitide meridians and monodromies sent to $\left(\begin{array}{ll}1 & \ddots \\ 0 & \ddots\end{array}\right)$, generates uppertriangubr umiptent motion group

Similarly for primes:' given p_{1}, \cdots, p_{n}, want to construct extension ramified over p_{1}, \cdots, p_{n-1}
- Gov's gran generated by monodromies
- Linking number depends on order of fabemins $\sigma_{p n}$ or decomposition of p_{n}

Open Question: How to anituct those extensions explicitly?
mod 2, 3 primes: Rédei (1939)
$\bmod 2,4$ primes: A_{mano} (2014)
$\bmod 3,3$ primes: Amano, Mizusawa, Morishita (2018)
13
 Botromean Primes.

"Miler link of 4 components"

