Key
2023/03/01 Talk Plan

- To wite
- To say
- Supplementary Notes

Agendas
(1) Cora sondena between Knots \& Primes
(2) Decomposition of Karts \& Primes
(3) TQFTs as a method to grate toplogial invozients
(4) ID TQFTs
(5) Towards Azithmetr TQFTs
§ 1.1 : Knots
M: Compact 3 manifold, e.g s^{3}
K : Knot, ie an embedding $S^{\prime} \hookrightarrow M$.
One invariant of knots is the knot group, the fundamental grump of the knot complement

$$
G_{k}=\pi_{1}(M \backslash k)
$$

M\K not compact, instead we can remove a tabular neighbomitioal of M.
V_{k} : Tubaber igbo of k.

$$
\begin{array}{ll}
M_{k}:=M \backslash \operatorname{int}\left(v_{k}\right) \\
L=k_{1} \Perp k_{2} \Perp \cdots k_{r} & \text { link } \\
G_{L}:=\pi_{1}(M \backslash L) & \text { link group }
\end{array}
$$

We consider the following fundamental groups
$\pi_{1}(M)$ depends on M, but $\pi .\left(S^{3}\right)=0$

$$
\begin{aligned}
& \pi_{1}(k) \cong \pi_{1}\left(s^{\prime}\right) \cong \mathbb{Z} \\
& \pi_{1}\left(v_{k}\right) \cong \pi_{1}(k) \cong \mathbb{Z} \\
& \pi_{1}\left(\partial v_{k}\right) \cong \pi_{1}\left(s^{\prime} \times s^{\prime}\right) \cong \mathbb{Z}^{2}=\langle\alpha, \beta \mid[\alpha, \beta]=1\rangle
\end{aligned}
$$

$\xi 1.2 P_{\text {rimes }}$
K : Number field (Usually Q for most of this talk K)
$\theta_{k}:$ Ring of integers of $k\left(\theta_{\mathbb{Q}}=\mathbb{Z}\right)$
$p:$ Prime ideal of θ_{k}.
Given a prime ideal p, there ore 2 contentions we con do:
K_{p} : p-adz completion of K.
$\mathbb{F}_{p}: \theta_{k} / p$, the aside field at p.
Will define ramification in the next section, but just sating results fee now.
Big unsolved problem: To understand the structure of $G a l(\bar{k} / k)$ Every finite extension is ramified at fixity many plows, so suffices to study $G_{s}(k)$
Let $S=\left\{p_{1}, \cdots, p_{r}\right\}, G_{s}(k):=G_{a}\left(\left(k_{s} / k\right), K_{s}=\right.$ maximal ext of K unzmified outside of S.
Still very hard to compute in general, dent even know if fig. for a single prime.

There is an algebraic arabloye of the fundamental group called the étcle fundamental group: ètale maps are flat and unzamified which manly corresponds t

$\pi_{1}\left(S_{\text {pec }} \theta_{k}\right) \cong G_{a}\left(\left(k^{u r} / k\right)\right.$, in particular $\pi_{1}\left(S_{\text {pec }} \pi\right)=1$
$\pi \cdot\left(\operatorname{Spec} \theta_{k} \backslash S\right)=G_{S}(K) \quad G o l o i s ~ g r o u p ~ o f ~ m a x i m e l ~ e x t e n s i o n ~ u n z o m i f i e d ~ a u t s i d e ~ S . ~$
$\pi_{1}\left(S_{p e c} \mathbb{F}_{p}\right) \cong \operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right) \cong \hat{\mathbb{Z}} \quad$ Generated by Frobenius.
$\pi_{1}\left(\operatorname{Spec} \theta_{k_{p}}\right) \cong \operatorname{Gal}\left(K_{p}^{u r} / K_{p}\right) \cong \operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right) \cong \hat{\mathbb{Z}}$
π. $\left(\right.$ Spec $\left.K_{p}\right) \cong \operatorname{Gal}\left(\bar{K}_{p} / K_{p}\right)-$ hard t_{0} calculate, instead look at "tame quotient"
$\pi_{1}^{t}\left(S_{p e c} K_{p}\right) \cong\left\langle\sigma, \tau \mid \tau^{p-1}[\tau, \sigma]=1\right\rangle \quad P_{\text {rolinte }}$ gran
π_{1}^{t} : tame fundamental gap, take timely zomifiad exteriors (zumifiain daze at acth p is coprime to char $k(p)$)
\exists surjection $\pi_{1}(x) \longrightarrow \pi_{1}^{1}(x)$
lift f Fobeais mes
σ : (lift of) Frobenius, $\sigma(x) \equiv x^{p} \bmod p$. Explicitly $\sigma\left(\zeta_{n}\right)=Z_{n}^{p}$
r: Monodromy - generator of the inertia subgroup $I_{k_{p}}=\operatorname{Ker}\left(\right.$ res: $\left.G_{a}\left(\bar{K}_{p} / K_{p}\right) \longrightarrow G_{a l}\left(\mathbb{F}_{p} / \mathbb{F}\right)\right) \quad$ Generator of $I_{k_{p}}$ exists because we are taking tame quotient Explicitly: $\tau\left(y_{n}\right)=z_{n}, \tau\left(\sqrt{p}_{p}\right)=\zeta_{n} \sqrt{p}$ (Tame $Q_{u 0}$ tent $=G_{0} / G_{1}$ is a subgroup of $k_{L}^{\prime \prime}$ which is cyclic)

So we have the following correspondence:

$\S 2$ Decomposition of $K_{n o t s}$ and Primes
\$2.1 knots
Deft (Ramified Covering Space)
Let $L=L_{1} \mu L_{2} \mu \cdots L_{s} \hookrightarrow M$ bealink, a cts map $f: N \rightarrow M$ is a ramified covering over L if:

- $\left.f\right|_{N \backslash f^{-1}(L)}: N \backslash f^{-1}(L) \longrightarrow M \backslash L$ is a covering map
- For each $y \in f^{-1}(L), \exists$ ngbds $D^{2} \times I \cong U \ni y, D^{2} \times I \cong V \ni f(y)$, st $f_{\star}: U \rightarrow V$ is $\left(z \mapsto z^{e}\right) \times i d$ $C_{\text {identifying }} D^{2} \cong\{|z| \leq 1\} \subseteq \mathbb{C}$
This is like ramification of Riemann Surfaces, have ramification over a co-dimension 2 submanifold so intuitively the map is "wrapping" around the submanifld e is fixed for each component link K_{i}, we call this the ramification degree of k_{i}

Let $X:=M \backslash L, Y:=N \backslash f^{-1}(L)$, let $G:=G_{a}\left(M / s^{3}\right)=G_{a l}(Y / X)$ ie this is the Quotient of $\pi_{1}\left(s^{3} / L\right)$ that corresponds to the covering space $N \backslash f^{-1}(L)$
Let K be a knot in M that is either a component of L or disjoint $t . L$. V_{K} tubular ngbd.
$f^{-1}(K)$ will be a link in N, say $f^{-1}(K)=K . \cup \cdots \cup K_{r}, V_{k i}$ the component of $f^{\prime}\left(V_{k}\right)$ containing k_{i}
Pick a basepoint $x \in \partial V_{k}$, then G acts on $f^{-1}(x)=\left\{y_{1}, \cdots, y_{n}\right\}$, where $n=\# G . \quad x \notin L$
G acts $t_{\text {ransitively }}$ on $f^{-1}(x) \Rightarrow G$ acts transitively on $\partial k_{1}, \cdots, \partial k_{\text {. }}$ and thus k_{1}, \cdots, k_{r}
We define the stabiliser of K_{i} to be the decomposition group
Decomposition Group: $D_{k_{i}}:=\left\{g \in G \mid g\left(k_{i}\right)=K_{i}\right\}$

The decomposition groups are all conjugate to each other:
If $g\left(k_{i}\right)=k_{j}$, then $D_{k_{j}}=g D_{k_{i}} g^{-1}$.
Moreover, g incluas a homeomorphism of tabular boundaries

$$
g \mid \partial v_{k_{i}}: \partial V_{k_{i}} \longrightarrow \partial V_{k_{j}} .
$$

In parteanar for $g \in D_{K_{i}}, g \mapsto g l_{\nu_{k_{i}}}$ gives a covering space autiomophism of $\partial V_{K_{i}}$ and induces an isomorphism:
$D_{K_{i}} \cong \operatorname{Gal}\left(\partial K_{i} / \partial K\right)$. This is a course of a torus, is generated by α and β.

The map $g \mapsto g l_{k_{i}}$ indues a homomorphism:

$$
D_{k_{i}} \longrightarrow \operatorname{Gal}\left(K_{i} / K\right)
$$

Define the inertia group $I_{k_{i}} t$ be the kernel of this homomorphism.
Meridians get sent to the identity, so $I_{k_{i}}$ is generated by α.

Upshot: We can understand $D_{k_{i}}$ and $I_{k_{i}}$ by looking at how they act on $f^{-1}(x)$.
Fix x_{01}^{i} a point in $f^{-1}(x) \cap \partial V_{k i}$. Let the orbit of x_{01}^{i} under \propto be $\left\{x_{\ldots,}, x_{\ldots}, \cdots, x_{o k}\right\}$.
Then \# $I_{k_{i}}=e$, the ramification degree.
Define $x_{m n n}=\beta^{m} \cdot x_{0 n}$, and define f to be the minimal m sit $x_{f}, \in\left\{x_{01}, \cdots, x_{0 e}\right\}$.
f is the covering degree of k_{i} over k.

$$
e f=\left|f^{-1}(x) \cap \partial k_{i}\right|
$$

Then we have: $e f r=n=\# G$.
Some special cases:

$$
\begin{aligned}
& D_{k_{i}}=1 \Longleftrightarrow e=f=1, r=n \quad K \text { decomposes compltity. } \\
& D_{k_{i}}=G \Longleftrightarrow e f=n, r=1 \\
& I_{k_{i}}=1 \Leftrightarrow e=1, f r=n \\
& I_{k_{i}}=G \Longleftrightarrow e=n, f=r=1 \quad K \text { totally ramified }
\end{aligned}
$$

$\$ 2.2 P_{\text {rimes }}$
Deft (Ramification of a prime)
Let L / k be a finite extension of number fields. p a $p z i m e ~ i d e a l ~ o f ~ \theta_{k}$.
$\rho \theta_{l}$ is an ideal in θ_{l}, but not necessarily prime.
θ_{l} Dedekind domain so has unique prime factorisation

$$
p \theta_{l}=P_{1}^{e_{i}} \cdots P_{r}^{b_{r}} \quad P_{i} \cap \theta_{K}=p
$$

P is unzamified in L if $e_{i}=1 \quad V_{i}$. e_{i} is the ramification degre of P_{i}
Quotienting induces an ertarsen of escher fides: Let $f_{i}=\left[\theta_{L} / P_{i}: \theta_{K} / p\right]$, then if $\theta_{k} / p=F_{p}, \theta_{L} / P_{i}=\mathbb{F}_{p}$.
f_{i} is called the Zusche degree of $P:$
Theorem:: $\sum e_{i} f_{i}=[L: K]=n \quad$ Proof omitted, quite inndined.

Suppose now that L / K is Gabis, then Gal $(L / k)_{\text {acts }}$ tamsitiney on $\left\{P_{1}, \cdots, P_{r}\right\}$ Pf omitted
Then for $\sigma \in G_{a}(L / k)$:

$$
\begin{aligned}
p \theta_{l}=\sigma(p) \theta_{l}=\sigma\left(p_{1}\right)^{e_{1}} \sigma\left(p_{2}\right)^{e_{2}} \cdots \sigma\left(p_{r}\right)^{e_{r}} & \Rightarrow e_{1}=e_{2}=\cdots=e_{r}=e \\
& \Rightarrow \theta_{l} / p_{i} \cong \theta_{l} / \sigma\left(p_{i}\right) \\
& \Rightarrow f_{1}=f_{2}=\cdots=f_{r}=f \\
& \Rightarrow e f_{r}=n
\end{aligned}
$$

Decomposition group: Stabiliser of P_{i}
$D_{P_{i}}=\left\{\sigma \in G_{a}\left((L / K) \mid \sigma\left(P_{i}\right)=P_{i}\right\}\right.$ Note again that the decomposition gaps are conjugate. By orbit-stabiliser: $D_{p i}$ has order eff.

Fixing a $P_{i}, \quad D_{p i} \cong G_{a l}\left(L_{p_{i}} / k_{p}\right)$.
Moreover: $\quad \sigma \mapsto\left(\bar{\sigma}: \alpha \operatorname{mad} P_{i} \mapsto \sigma(\alpha)\right.$ mod $\left.P_{i}\right)$ defines a surjeetive map: Surjectinty not obvious, bat proof omitted.
$D_{p_{i}} \cong G_{a}\left(\left(L_{P_{i}} / k_{p}\right) \longrightarrow G_{a l}\left(\mathbb{F}_{p^{f}} / \mathbb{F}_{p}\right)\right.$ cydic of order f, generated by fobbemiss.
We define $I_{P_{i}} t_{0}$ be the kernel of this map. Then $\left|I_{P_{i}}\right|=e I_{\text {nesting grapes are conjugate. }}$
Special Cases:

$$
\begin{aligned}
& D_{P_{i}}=1 \Longleftrightarrow e=f=1, r=n \quad p \text { decomposes compltilly. } \\
& D_{P_{i}}=G \Longleftrightarrow e f=n, r=1 \\
& I_{p_{i}}=1 \Leftrightarrow e=1, f r=n \\
& I_{p_{i}}=G \Leftrightarrow e=n, f=r=1 \quad p \text { total ramified }
\end{aligned}
$$

Extra complexity in prime case: $D_{K_{i}}$ is quotient $f \mathbb{Z}^{2}$ so alas abelan, but $D_{R i}$ is geneally non obelion.
§3. TQFTs
Def (Category of Bodices)
Borden Objects: $n-1$ manifolds wi choice of ocimatation (including empty manifold)
Morphisms: Given objects N_{1}, N_{2}, a orphism $M \in H_{o m}\left(N_{1}, N_{2}\right)$ is a n-fold sit $\partial M=\bar{N}, \Perp N_{2}$, up to orientation preserving diffeomaphisms.

Orientation needed so we can define on "IN" us. "OUT"
In physics, can vier this orientation as "time endution" of a state

Composition of morphisms: Given $M \in H_{\text {om }}\left(N_{1}, N_{N}\right)$, $M^{\prime} \in H_{o m}\left(N_{2}, N_{N}\right)$, we define the composition $M^{\prime} \circ M$ to be the n.fold obtained by gluing M and M^{\prime} along N_{2}
egg:

$$
M^{\prime}=
$$

then $M^{\prime} \circ M=$

Identity: Id :N $\longrightarrow N$ is given by $N \times[0,1]$

Intuitive, this means you can "multiply" objects in the category
Note that Bordn is monoidal with operation disjoint union. The unit object is ϕ.

Def (TQFT)
An n-dimensional Topological Quantum Field Theory is a symmetric monoidal functor:

$$
\tau: \text { Borden }_{n} \longrightarrow \text { Vect }_{k}
$$

Explicitly is the following set of data:

- For an n-1 manifold $N, \tau(N)$ is a K-Vector space. These come from the dion of a functor
- For an n manifold $M \in H_{o m}\left(N_{1}, N_{2}\right), \tau(M)$ is a linear map:

$$
\tau(M): \tau\left(N_{1}\right) \longrightarrow \tau\left(N_{2}\right)
$$

- $\tau\left(N_{1} \Perp N_{2}\right) \cong \tau\left(N_{1}\right) \otimes \tau\left(N_{2}\right)$
- $\tau(\phi) \cong k$
- $\tau\left(M_{1} \Perp M_{2}\right) \cong \tau\left(M_{1}\right) \otimes \tau\left(M_{2}\right)$
- $\tau\left(N_{1}\right) \otimes H\left(N_{2}\right) \cong \tau\left(N_{2}\right) \otimes \tau\left(N_{1}\right)$
"Monoidal properties"

Symmetry

The $\tau(\bar{N}) \cong \tau(N)^{*} \quad P_{\text {wot omitted }}$
Ides: We can "forget" the time evolution intuition from physics because:

Finite dimensiondity?
Is a corollary of the proof that $\tau(\tilde{N}) \cong \tau(N)^{*}$

So can think of $\tau(m) \in H_{o m}\left(\tau\left(N_{1}\right), \tau\left(N_{2}\right)\right)$
as instand $\tau(M) \in \operatorname{Hom}\left(\tau\left(N, \Perp \bar{N}_{2}\right), k\right) \cong\left(\tau\left(N_{1}\right) \otimes \tau\left(N_{2}\right)^{*}\right)^{*} \cong \tau\left(N_{1}\right)^{*} \oplus \tau\left(N_{2}\right)$

Algebraically: $\tau(M) \in \operatorname{Hom}_{0}\left(\tau\left(N_{1}\right), \tau\left(N_{2}\right)\right) \cong \tau\left(N_{1}\right)^{*} \otimes \tau\left(N_{2}\right) \cong \tau\left(\bar{N}_{1}\right) \otimes \tau\left(N_{2}\right) \cong \tau\left(\bar{N}_{1} \Perp N_{2}\right) \cong \tau(\partial M)$

This means we can associate to each n-manifold a vector instead of a linear map.
In particular, if M is a manifold wo bermdary, then

$$
\tau(M) \in \tau(\phi) \cong K \quad \text { is just a number }
$$

This is diffeomopphism-inuariant, so TQFTs can be thanght of as a way to generate invariants on manifolds
§4. 10 TQFTs
The only connected O-manifold is the point P and \bar{P} pt at reversed orientation
The only connected 1 -manifolds are I and S^{\prime}.

Let $V=\tau(P), V^{*}=\tau(\bar{p})$.
I is the identity morphism between P and P, so $\tau(I)$ must be identity map

$$
\tau(I)=i d \in H_{o m}(v, v) \cong H_{o m}(\bar{v}, \bar{v}) \cong v^{*} \otimes v
$$

$$
\begin{aligned}
& <_{\bar{p}}^{p} \\
& \sum e_{i}^{*} \otimes e_{i} \epsilon V^{*} \otimes v \cong H_{0}\left(k, v^{*} \otimes v\right) \quad(\sigma \otimes v \mapsto \sigma(v)) \in H_{0_{0}}\left(V^{*} \otimes v \mapsto k\right)
\end{aligned}
$$

What about $\tau\left(S^{\prime}\right)$?
Have composition of maps:

$$
\therefore \tau\left(s^{\prime}\right)=\operatorname{dim}(v)
$$

All morphisms in Bord, are made up of the above, so every ID TQFT is uniandy determined by $\tau(P)=V$.
In fact: Every 2D TQFT corresponds to a Frobenins algebra and vice versa

- 3D TQFTs harder, bat related to Hoof algebras.
\$5 Towards Arithmetic TQFTs
From our analogy earlier, we can think of O_{k} as a 3 -fold, and local field k_{p} as a tubule boundary of the knot (2-fold)

If S is a set of primes, we can think of $\left(S_{p e c} \theta_{K}\right) \backslash S$ as a 3 -manifold, with "boundary being the local fields $\frac{11}{p \in S} S_{p e c}\left(k_{p}\right)$, which can be thought of as a 2 -manifold.
\therefore We can think of $\left(s_{p e c} \theta_{K}\right) \backslash S$ as a 3 -Bordism between the local fields at primes in S.

How do we think about orientation in this setting? I'm not actelly sure.

Under this setting an arithmetic TQFT should assign:
$\tau:$ Spec $\theta_{K} \longmapsto A$ number Since θ_{K} thought of as a manifold wo boundary.
$\tau:$ Spec $K_{p} \longmapsto A$ vector space
$\tau:\left(S_{\text {pec }} \theta_{k}\right) \backslash S \longmapsto A$ vector in $\bigotimes_{p \in S} \tau\left(S_{\text {pec }} K_{p}\right)$

