2023/03/01 Talk Plan

Agenda
O Cozzaspondence between Knots & Primes
3 Decomposition of Knots & Primes
3 TQFTs as a method to generate toplagical invariants
() ID TQFTs
(S) Towards Azithmetic TQFTs
§1.1: Knots
M: Compact 3 manifold, e.g. 5 ³
$K:$ Knot, i.e an embedding $S' \hookrightarrow M$.
One invaciant of knots is the knot group, the fundamental group of the knot complement
$G_{\mathbf{k}} = \pi_{\mathbf{i}}(\mathbf{M} \setminus \mathbf{k})$
M/K not compact, instead we can remove a tabular neighbourhoad of M.
Vx: Tubake nabed of K.
$M_{\kappa} := M \setminus \inf(V_{\kappa})$
$L = K, \coprod k_2 \coprod \cdots \coprod k_r \qquad (ink$
$G_{L} := \pi_{L}(M \setminus L)$ link group
ð '
We consider the following fundamental aroups
$\pi_{i}(M)$ depends on M_{j} but $\pi_{i}(s^{3}) = O$
$\pi_{n}(\kappa) \cong \pi_{n}(\varsigma') \cong \mathbb{Z}$
$\pi_{\cdot}(V_{\mathbf{k}}) \cong \pi_{\cdot}(\mathbf{k}) \cong \mathbb{Z}$
$\pi_{\cdot}(\partial V_{k}) \cong \pi_{\cdot}(S' \times S') \cong \mathbb{Z}^{2} = \langle \alpha, \beta \mid [\alpha, \beta] = 1 \rangle$
§1.2 Primes
K: Number field (Vaulh Q for most & this talk)
O_{K} : Ring of integers of K ($O_{R} = \mathbb{Z}$)
p: Pzime ideal of Ox.
Given a prime ideal p, there are 2 constructions we can do:
Kp: p-ade completion of K.
$F_{P}: O_{k}/P$, the residue field at P .
Will define zamification in the next section, but just stating results be now.
Big unschool problem: To understand the structure of Gal(K/K) Every finth extension is remified at finith many places, so suffices to study GalK)

Big unsolved problem: To understand the structure of Gal($\overline{K/K}$) Every finite extension is ramified at finitely many places, so suffices to study GalK) Let S=\$p,...,pr}, G_s(K):= Gal(K_s/K), K_s = maximal ext of K unremified outside of S. Still very hard to compute in general, don't even know if fig. for a single prime.

There is an algebraic analogue of the fundamental group called the étale fundamental group: étale maps are that and unramified which meanly corresponds to a cancer map of tradegral spaces, so the étale fundamental group is defined as a finit of the automorphism groups of all finite étale maps.

$$T_{i} (Spec O_{k}) \cong Gal(k^{w'}/k), \text{ in particular } T_{i}(Spec \mathbb{Z}) = 1$$

$$T_{i} (Spec O_{k} \setminus S) = G_{S}(k) \quad Galois group of pressimal extension uncombined outside S.
$$T_{i} (Spec O_{k}) \cong Gal(\overline{H_{p}}/H_{p}) \cong \widehat{\mathbb{Z}} \quad Generated by Frobenius.
$$T_{i} (Spec O_{kp}) \cong Gal((\overline{H_{p}}/H_{p}) \cong \widehat{\mathbb{Z}})$$

$$T_{i} (Spec K_{p}) \cong Gal((\overline{K_{p}}/K_{p}) - hard to calculate, instead look at "tame quationt"
$$T_{i}^{t}(Spec K_{p}) \cong (\sigma, \tau | \tau^{p^{n}} | \tau, \sigma] = 1) \quad Prolinte group$$

$$T_{i}^{t}: tame backmental group, take tamby comfied extension (combinate degree at each φ is coprome to chare $k(\varphi)$)
$$\overline{T} subjection T_{i}(x) \longrightarrow T_{i}^{t}(x)$$$$$$$$$$

$$\sigma$$
: (lift of) Frobenius, $\sigma(x) \equiv x^{p} \mod p$. Explicitly $\sigma(\zeta_{n}) = \zeta_{n}^{p}$

τ: Monodromy - generate of the inertia subgroup Ixp = Ker (res: Gal (Kp/Kp) ---> Gal (Fp/FF)) Generate of IKp evists because we are taking tome quotient Explicitly: τ(Xn)= Xn, τ(JP)= Xn JP (here is cyclic)

So we have the following assuspondence:

Knots	Primes	
3- Manifold M	Number Ring Ok.	
Knot S' -> M	Prime icleal Spec IFp <> Spec OK	
Tubulaz ngbel Vic	P-adic number ring OKp	
Boundary of ngbel 2Vk	prodic local field Kp	
Long: tude B	Frobenius o	
Meridian ∝	Monodromy_ T	
Link Group TT. (MIL)	Galois Group w/restricted zomification π . (Spec $O_{K} \setminus S$) \cong $G_{S}(K)$	
	•	

<u>§</u> 2 D	lecomposition of Knots and Primes
<u>\$2.1 j</u>	knots
Defn (Ramifiel Covering Space)
Let 1	σ : L=L, μ L_2 μ - μ L_s \rightarrow M be a link, a cts map f: N \rightarrow M is a zomified covering over L if
•	$f _{N,K''(L)} : N \setminus f'(L) \longrightarrow M \setminus L$ is a covering map
•	For each y ∈ f'(L). I nobds D'×I ≅ U>Y, D'×I ≅ V>f(y), st f: U→V is (ZHZ)×id
	(identifying $D^2 \cong \{1z\} \in C$
This is	like ramification of Riemann Surfaces, have ramification over a co-dimension 2 submanifold so intuitively the map is "wrapping" around the submanifold
e is	fixed for each component link K: we call this the zamilication degree of K:
Let >	X:= M \ L, Y:= N \ F'(L), let G := Gal(M/53) = Gal(Y/X) i.e this is the Quotent of TI.(53 \ L) that corresponds to the covering space N \ F'(L)
Let 1	K be a knot in M that is either a component of L or disjoint to L. VK tubular nybed
ť.,(k)	will be a link in N, say f'(K)= K. UUKr, Vk: the component of f'(Vk) containing K:
Pick o	bosepoint x E d Vu, then G acts on file) = {y1,, yn}, where n= #G. x & L
G acts	transitively on $f^{-1}(x) \Rightarrow G$ acts transitively on $\partial K_1, \dots, \partial K_r$ and thus K_1, \dots, K_r
We	define the stabilises of K: to be the decomposition group
Dear	noosition Group: $D_{K_i} := \{q \in G \mid q(K_i) = K_i\}$

The decomposition groups are all conjugate to each other:
If $q(K_i) = K_j$, then $D_{K_i} = q D_{K_i} q^{-1}$.
More over, g incluas a homeomorphism of tubular boundaries
$g _{\partial V_{\mathbf{k}_i}} : \partial V_{\mathbf{k}_i} \longrightarrow \partial V_{\mathbf{k}_{i-1}}$
In particular for gEDK; g importantly gives a covering space automorphism of 2VK; and induces an isomorphism.
DK: ≅ Gal(∂K:/∂K). This is a curre of a torus, is generated by a and B.
The map g H>glk; induas a homomorphism:
$D_{\mathbf{K}_{i}} \longrightarrow G_{\mathbf{a}}((\mathbf{K}_{i}/\mathbf{K})) $
Define the inertia group Ik: to be the Kernel of this homomorphism.
Meridians get sent to the identity so Iki is generated by a.
Again Ik; & Ik; are conjugate.
Upshot: We can understand Diki and Iki by looking at how they act on f ⁻¹ (x).
Fix x ⁱ _o , a point in f ⁻¹ (x) A d Vki. Let the orbit of x ⁱ _o , under or be {x _i , x _{ii} ,, x _o }.
Then # Ix: = e, the zamification degree.
Define $x_{mn} = \beta^{m} \cdot x_{0n}$, and define f to be the minimal m s.t $x_{f_i} \in \{x_{0i}, \dots, x_{0e}\}$.
f is the <u>covering degree</u> of Ki over K.
$ef = f'(x) \wedge \partial K_i $
Then we have: efr=n=#G.
Some special cases:
Dx:=1 \iff e=f=1, r=n K decomposes complitily.
$D_{K_i} = G \iff ef = n, r = 1$
$I_{k} = I \iff e = I_{k} f_{r} = n$
$I_{K_i} = G \iff e^{-n}, f^{-r} = K$ totally convilced

$$D_{P_{i}} = G \iff ef = n, r = 1$$

$$I_{P_{i}} = I \iff e = 1, fr = n$$

$$I_{P_{i}} = G \iff e = n, f = r = 1, p totally concluded$$

Extra complexity in prime case: Dr. is quotinel of Z² so always abolian, but Dp: is generally non-abelian

<u>§3. TQFT,</u>

 $\mathsf{Algebraically}: \quad \mathsf{T}(\mathsf{M}) \in \mathsf{Hom}(\tau(\mathsf{N}_{i}), \tau(\mathsf{N}_{z})) \cong \mathsf{T}(\mathsf{N}_{i})^{*} \otimes \mathsf{T}(\mathsf{N}_{z}) \cong \mathsf{T}(\bar{\mathsf{N}}_{i}) \otimes \mathsf{T}(\mathsf{N}_{z}) \subseteq \mathsf{T}(\bar{\mathsf{N}}_{i}) \otimes \mathsf{T}(\bar{\mathsf{N}}_{i}) \cong \mathsf{T}(\bar{\mathsf{N}}_{i}) \cong \mathsf{T}(\bar{\mathsf{N}}_{i})$