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1 Preliminaries

1.1 Embedding An into Rn+1

Rn+1 contains an embedding of An by taking the roots of the root system to be αij = ei − ej for (ei)
n
i=0 the

standard basis of Rn+1.

We take the positive roots of An to be the set A+
n = {αij |0 ≤ i < j ≤ n}. This set of positive root

corresponds to a base βi = αi,i+1 for i = 0, 1, · · · , n− 1.

We define Λn to be the root lattice of An−1, i.e. the vectors in Rn that are integer linear combinations of the
roots. Similarly we let Λ+

n to be the positive root lattice, which are the vectors which are positive integer
linear combinations of the positive roots.

We additionally define h(λ) to be the sum of the coefficients when λ is expressed in terms of the basis. This
is the height of λ.

1.2 The q-Analogue of Kostant’s Partition Function and the alternating Weyl
sum

Let P(λ, q−1) denote the q-analogue of Kostant’s Partition Function. It is the generating function where the
coefficient of q−k is equal to the number of ways to express λ as a positive integer linear combination of the
positive roots of An, such that the sum of the coefficients is k.

P(λ, q−1) :=
!

n1,··· ,nr
n1α1+···nrαr=λ

q−(n1+···+nr)

Define the (Alternating) Weyl Sum to be:

M0
λ(q

−1) :=
!

ω∈Sn+1

ε(ω)P(λ+ ωρ− ρ, q−1)

Here, we take ρ = 1
2

"
i<j αij to be half of the sum of the positive roots, and ω ∈ Sn+1 acts on ρ by

permuting the co-ordinates of ρ, and ε(ω) gives the sign of the permutation ω.
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2 The conjecture

The following conjecture was given by Dr. Rong Zhou, and was the subject of my research project. The
original conjecture was given for all root systems, but since my project focused on the case of the root system
An, I will state the conjecture for An.

Conjecture 2.1. Given µ = (n+ 1,−1,−1, · · · ,−1), and s a positive integer:

lim
s→∞

q
sn(n−1)

2 M0
sµ(q

−1) = pn(q)

In other words, for sufficiently large s, the alternating Weyl sum multiplied by q
sn(n−1)

2 is eventually a

constant polynomial. Note in particular that the power of q that we multiply by, sn(n−1)
2 is the height of

the vector sµ.

3 A useful identity

Proposition 3.1. For any λ and ρ as above, we have

M0
λ(q

−1) =
!

ω∈Sn+1

ε(ω)P(λ+ ωρ− ρ, q−1)

=
!

D⊆A+
n−1

(−1)|D|P
#
λ−

!

α∈D

α, q−1

$

This can be proved using the Weyl Character Formula.

From now on we will consider the sum over subsets of the positive roots, instead of the sum over the
symmetric group.

4 A recursive identity on calculating the Partition Polynomials

Let λ ∈ Λn, we wish to recursively express P(λ, q−1) through partition polynomials of elements in Λn−1.
We do so by making the last co-ordinate of λ equal to 0.

Noting that the only positive roots such that the last co-ordinate is non-zero are of the form αin for i < n, let
ci denote the coefficient of αin, then we must have c1 + c2 + · · ·+ cn−1 = k, where −k is the last co-ordinate
of λ.

We sum over all possible values of ci such that their sum is k, once the ci’s are fixed, we can factor out q−k

and consider partitions of λ−
"

ciαin instead to obtain the following

Proposition 4.1.

P(λ, q−1) = h−k
!

c1+···+cn−1=k

P
%
λ−

!
ciαin, q

−1
&

Since the the last co-ordinate of λ−
"

ciαin is 0, this implies that the partitions of the above vectors will not
use any positive roots of the form αin, or that it will only use positive roots in the set {αij |1 ≤ i < j ≤ n−1}.
By projecting onto Rn−1 by removing the last co-ordinate, each of these polynomials is in fact a partition
polynomial of a vector in Λn−1.
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5 Rearranging the Weyl Sum

We try to rearrange the Weyl Sum in a way that can utilise the above identity.

5.1 Considering a ‘shortened’ Weyl Sum

First we consider a ‘shortened’ sum where we sum over all subsets of roots that have zero in its final
co-ordinate. In other words, let S′ := {αij |1 ≤ i ≤ j ≤ n− 1}. We consider the sum:

!

D⊆S′

(−1)|D|P
#
λ−

!

α∈D

α, q−1

$

Noting that S′ does not contain βn, all of these λ −
"

α∈D α have the same final co-ordinate. Let the the
common final co-ordinate be −k. Then applying the previous identity from section 4:

P
#
λ−

!

α∈D

α, q−1

$
= q−k

!

c1+···+cn−1=k

P
#
λ−

!

α∈D

α−
!

i

ciαin, q
−1

$

Where the summands of the second sum all have last co-ordinate zero, which means we have effectively
reduced all the partition polynomials to ones of lower dimension.

Going back to our ‘shortened’ sum:

!

D⊆S′

(−1)|D|P
#
λ−

!

α∈D

α, q−1

$
= q−k

!

D⊆S′

!

c1+···+cn−1=k

(−1)|D|P
#
λ−

!

α∈D

α−
!

i

ciαin, q
−1

$

= q−k
!

c1+···+cn−1=k

!

D⊆S′

(−1)|D|P
#
λ−

!

α∈D

α−
!

i

ciαin, q
−1

$

By reversing the order of summation, the term
!

D⊆S′

(−1)|D|P
#
λ−

!

α∈D

α−
!

i

ciαin, q
−1

$
is in fact equal to

a Weyl sum from a dimension lower, M0
π(λ−

!
i ciαin)

(q−1), where π denotes the projection map by removing
the last co-ordinate.

Thus:

!

D⊆S′

(−1)|D|P
#
λ−

!

α∈D

α, q−1

$
= q−k

!

c1+···+cn−1=k

M0
π(λ−

!
i ciαin)

(q−1)
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5.2 Rearranging the full Weyl sum

We now consider the full Weyl sum over subsets of S := {αij |1 ≤ i ≤ j ≤ n}. Any subset of S can be
expressed uniquely as the union of disjoint subsets D ⊆ S′ and T ⊆ S \ S′, thus instead of summing over S,
we can sum over S′ and S \ S′ simultaneously.

M0
λ(q

−1) =
!

D⊆S

(−1)|D|P
#
λ−

!

α∈D

α, q−1

$

=
!

D⊆S′

!

T⊆S\S′

(−1)|D∪T |P
#
λ−

!

α∈D∪T

α, q−1

$

=
!

T⊆S\S′

(−1)|T |
!

D⊆S′

(−1)|D|P
#
λ−

!

α∈T

α−
!

α∈D

α, q−1

$

The second summand is precisely the ‘shortened’ Weyl sum from the previous section. Combining this with
the result above, the sum is then equal to:

=
!

T⊆S\S′

(−1)|T |q−κ(λ−
!

α∈T α)
!

c1+···+cn−1=κ(λ−
!

α∈T α)

M0
π(λ−

!
α∈T α−

!
i ciαin)

(q−1)

Where we define κ(λ) to be the negative of the last co-ordinate of λ.

This sum may seem like a mess currently, but can be simplified immensely if the conjecture in section 7 is
true.

6 Case Study of A2

To motivate the conjecture of section 7, we first consider a case study of the A2 ⊂ R3 case.

Let λ = (a + b,−a,−b), a general vector lying on the positive root lattice of A2. We can compute directly
that P(λ, q−1) = q−(a+b) + · · ·+ q−(a+2b).

Then, we note that λ−α12 = (a+ b− 1,−a+1,−b), and so P(λ−α12, q
−1) = q−(a+b−1) + · · ·+ q−(a+2b−1).

As a result, P(λ, q−1)− P(λ− α12, q
−1) = q−(a+2b) − q−(a+b−1).

We note that λ has height h(λ) = a + 2b, and in particular, this implies that qh(λ)(P(λ, q−1) − P(λ −
α12, q

−1)) = 1− qb−1. An interesting observation is that the final expression is not depending on a.

Now we group the Weyl sum in the way outlined in 5.2:

M0
λ(q

−1) =[P(λ, q−1)− P(λ− α12, q
−1)]− [P(λ− α13, q

−1)− P(λ− α13 − α12, q
−1)]

− [P(λ− α23, q
−1)− P(λ− α23 − α12, q

−1)] + [P(λ− α13 − α23, q
−1)− P(λ− α13 − α23 − α12, q

−1)]

=q−h(λ)(1− qb−1)− q−h(λ−α13)(1− qb−2)− q−h(λ−α23)(1− qb−2) + q−h(λ−α13−α23)(1− qb−3)

=q−h(λ)[(1− qb−1)− (q2 − qb)− (q − qb−1) + (q3 − qb)]

=q−h(λ)(1− q − q2 + q3)

This in particular implies that qh(λ)M0
λ(q

−1) = 1 − q − q2 + q3 is a fixed polynomial. Interestingly, λ need
not be of the form sµ. The only assumption made on λ is the fact that λ minus any subset of the positive
roots, is still in the positive root lattice.
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7 A Stronger Conjecture

From the case study in the previous suggestion, it seems that the conjecture can be strengthened as follows:

For any λ such that λ−
!

α∈Φ+
n

α is in the positive root lattice, qh(λ)M0
λ(q

−1) is a fixed polynomial.

For n = 3 this hypothesis is certainly true, and in the next section we aim to use induction to prove this for
all n.

8 Implications of the Stronger Conjecture

Suppose the stronger conjecture is true for n, this means that qh(λ)M0
λ(q

−1) = pn(q) for some polynomial
pn. Alternatively, M0

λ(q
−1) = q−h(λ)pn(q).

Now suppose λ ∈ Rn+1 is a vector in the positive root lattice for n+1, and that λ−
!

α∈Φ+
n

α is in the positive

root lattice.

Substituting into the expression at the end of section 5.1, we obtain:

!

D⊆S′

(−1)|D|P
#
λ−

!

α∈D

α, q−1

$
= q−k

!

c1+···+cn−1=k

M0
π(λ−

!
i ciαin)

(q−1)

= q−k
!

c1+···+cn−1=k

q−h(λ−
!

i ciαin)pn(q)

We make the observation that αin and height n− i, so the vector λ−
"

i ciαin has height h(λ)−
"

i ci(n− i).

Noting that
"

ci = k, the sum becomes:

= q−k
!

c1+···+cn−1=k

q−h(λ−
!

i ciαin)pn(q)

= q−k
!

c1+···+cn−1=k

q−[h(λ)−
!

i ci(n−i)]pn(q)

= q−h(λ)
!

c1+···+cn−1=k

q
!

i ci(n−i−1)pn(q)

In particular, note that this sum only depends on k, which was defined in section 5.1 to be the last co-ordinate
of λ

We return to the rearranged sum at the end of section 5.2:

M0
λ(q

−1) =
!

T⊆S\S′

(−1)|T |
!

D⊆S′

(−1)|D|P
#
λ−

!

α∈T

α−
!

α∈D

α, q−1

$

=
!

T⊆S\S′

(−1)|T |q−h(λ−
!

α∈T α)
!

c1+···+cn−1=κ(λ−
!

α∈T α)

q
!

i ci(n−i−1)pn(q)

= q−h(λ)pn(q)
!

T⊆S\S′

(−1)|T |qh(
!

α∈T α)
!

c1+···+cn−1=κ(λ−
!

α∈T α)

q
!

i ci(n−i−1)

We note further that S \ S′ is the set of positive roots where the last co-ordinate is −1, so noting that κ(λ)
was defined to be the negative of the final co-ordinate of λ, we have that κ(λ−

"
α∈T α) = κ(λ)− |T |.

5



Here are several observations:

1. If the conjecture is true for all n, then we must have that pn divides pn+1

2. It sufficies to show that for any λ, that the following sum gives a fixed polynomial:
!

T⊆S\S′

(−1)|T |qh(
!

α∈T α)
!

c1+···+cn−1=κ(λ)−|T |

q
!

i ci(n−i−1)

3. The sum above does not in fact depend on all of λ, but only depends on the last co-ordinate of λ.
Since we are only summing over the subsets of S \ S′, which are just the simple roots (not dependent
on λ), and the second sum depends only on κ(λ)− |T |, where κ is the negative of the last co-ordinate,
so the second sum only depends on the final co-ordinate of λ.

Since the expansion of the sum only depends on the final co-ordinate, it seems likely that if the original
conjecture is true, then the strengthened conjecture should be true too since their decompositions
would be the same

8.1 A look into the first inductive step

In the case of A3 ⊂ R4, we consider the possible sets T :

T can be the sets ∅, {α14}, {α24}, {α34}, {α14,α24}, {α14,α34}, {α24,α34}, {α14,α24,α34}.
The final summand q

!
i ci(n−i−1) is of the form q2c1+c2 after substituting n = 4.

Note that κ(λ)− |T | only depends on the size of T , and we can let −k to be the final co-ordinate of λ.

Now we compute the values of h(
"

α∈T α) for our different T .

• If T = ∅, then the sum h(
"

α∈T α) is simply 0, so the set contributes the following to our sum:
#

!

c1+c2+c3=k

q2n1+n2

$

• If T = {α34}, then this has height 1, and |T | = 1, so it contributes the following term to our sum:

−q

#
!

c1+c2+c3=k−1

q2n1+n2

$

• If T = {α24} or {α14}, we have an identical calculation as above, but the height sum is different, so
instead of q in the front we would get q2 and q3 respectively.

• If T = {α14,α24}, the main difference is now that we sum over c1+ c2+ c3 = k−2 now, and the height
sum of the set is 3 + 2 = 5 so we multiply by q5 at the front.

• We proceed similarly for the rest for the rest of the subsets.

Thus in the case of n = 4 our task reduces to showing that:

#
!

c1+c2+c3=k

q2n1+n2

$
−
#

!

c1+c2+c3=k−1

q2n1+n2

$
(q + q2 + q3)

+

#
!

c1+c2+c3=k−2

q2n1+n2

$
(q3 + q4 + q5)−

#
!

c1+c2+c3=k−3

q2n1+n2

$
q6

is a fixed polynomial.

This doesn’t seem too hard to prove, but the summer project ended before I was able to do so, hopefully if
I have some time in the future, I will be able to finish off the induction step.
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