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1 Introduction

This essay is about Galois Deformations1.

Figure 1: Galois, Deformed

Let k be a finite field, and R be a complete local Noetherian ring with maximal ideal mR and residue
field k. Then there is a natural map GLn(R) → GLn(k) that is given component-wise by the quotient
map R → R/mR

∼= k.

Given a topological group Π and a ring R, a representation of Π is a continuous group homomorphism
Π → GLn(R). Given a representation ρ̄ : Π → GLn(k), it’s natural to ask how it lifts to a representation
in GLn(R). What representations ρ : Π → GLn(R) are there such that after composing with the map
GLn(R) → GLn(k), gives us ρ̄? In other words, we are looking for representations ρ such that the
following diagram commutes:

Π GLn(R)

GLn(k)

ρ̄

ρ

A deformation is a lift of this form modulo a “strict” equivalence relation, which we will define precisely
in the next section.

The first main result of this essay will be to follow Mazur’s paper and prove the existence of a Universal
Deformation Ring. This is a ring R along with a lift ρ : Π → GLn(R) such that for any ring R,
all the deformations of ρ̄ to GLn(R) is given by the composition of ρ and some ring homomorphism
ϕ ∈ Hom(R, R). i.e. any lift ρ : Π → GLn(R) is given by ρ = ϕ ◦ ρ for some ϕ ∈ Hom(R, R).

GLn(R)

Π GLn(R)

GLn(k)

ϕ

ρ̄

ρ

ρ

These notions will be made formal and explained in detail over the next few sections.

For the remainder of the essay we will try to understand the Universal Deformation Ring better, and
compute some explicit examples of R under certain hypotheses, following the work of Boston.

The majority of the essay will follow the papers [Maz89] and [Bos91], and the lecture notes given in
[Gou08] has been a useful reference in the writing on this essay.

1Image Credits: tinyurl.com/2fpjz9ah

tinyurl.com/2fpjz9ah
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2 Setup

2.1 Some Group Theory

Suppose Π is a profinite group equipped with the profinite topology. We impose a finiteness condition
on the group: [Maz89]

Definition. We say that Π satisfies the condition Φp if for every open subgroup of finite index Π0 ⊆ Π,
there is only a finite number of continuous homomorphisms from Π0 to Z/pZ. Where Z/pZ is equipped
with the discrete topology.

We will assume that Π satisfies condition Φp throughout the essay.

Later on in the essay we will take Π to be the absolute Galois group of a local field or the maximal
extension of a number field unramified outside of a finite set of primes, and we will show that both of
these Galois groups indeed satisfy the condition Φp.

Definition. A pro-p group is a profinite group G such that every finite quotient G/N is a p-group. We
define the pro-p-completion of G to be the profinite limit:

G(p) = lim←−
N

G/N

where N ranges over all normal subgroups where G/N is a finite p-group.

Given a profinite group G and its profinite completion G(p), there is a canonical continuous homomor-
phism G → G(p) since there is a natural map G → G/N for each N in the profinite limit. In light of this
the pro-p-completion satisfies the following universal property:

Proposition 1. If G is a profinite group and H is a pro-p group, then any homomorphism G → H
factors uniquely through G(p).

Proof. If H is a pro-p group, this implies that H = lim
←−

Hi and each Hi is a finite p-group.

Consider the map φi : G → Hi, the image of G must be a subgroup of Hi and must be a p-group. This
means that this map factors through G/Kerφi

∼= Imφi which is a p-group.

This gives rise to a map G(p) → G/Kerφi → Hi for each i. Thus by the universal property of inverse
limits, there is a unique map G(p) → H and G factors through this map, concluding our proof.

2.2 The Category of Complete Local Noetherian Rings

For the rest of this essay we fix k to be a finite field with characteristic p, we now define the category C :

Definition. Let obC be the set of rings R that are complete, local and Noetherian with residue field
k. By complete we mean that R is isomorphic to the inverse limit:

R = lim
←−

R/ms
R

Moreover we define morC to be the local ring morphisms φ : R → S that fix the residue field k.
In other words, we require that φ(mR) ⊆ mS and that the induced map R/mR → S/mS given by
r +mR (→ φ(s) +mS is the identity map on k.

Given this definition, we define several related categories:

• Suppose Λ ∈ C , we define CΛ to be the sub-category of C where we require that the objects of this
category to be additionally Λ-Algebras and that the morphisms should additionally be Λ-algebra
homomorphisms.
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• We define C 0 to be the full subcategory of local Artinian rings with residue field k. Note that any
Artinian local ring is automatically Noetherian and complete so this is indeed a subcategory of C .

• Finally, we define C 0
Λ to be the full subcategory of CΛ of Artinian rings.

We prove a proposition:

Proposition 2. Every element in C is an inverse limit of objects in C 0.

Proof. Suppose R ∈ C , since we know that R is complete, R = lim
←−

R/ms. It suffices to show that R/ms

is Artinian, which means we need to show that it has dimension zero.

Suppose there is a prime ideal ms ⊆ p, then since p is a prime ideal this implies m ⊆ p which gives m = p
by the maximality of m. Since prime ideals of R/ms correspond to prime ideals of R containing ms, this
implies that R/ms has only 1 prime ideal. Thus R/ms is Artinian.

Lemma 3. There is a canonical embedding k ↩→ R, also known as the Teichmüller Lift.

This implies that there is a way to write elements in R uniquely as the sum of an element of k and an
element in mR:

R = k ⊕mR

Proof. Complete local rings satisfy Hensel’s lemma, so we can apply Hensel’s Lemma to R.

Since R/m = k ∼= Fpn contains all pn − 1th roots of unity, we can factor Xpn−1 − 1 into coprime linear
polynomials in Fpn , and this factorisation can be lifted into R by Hensel’s Lemma. The Teichmüller lift
is simply the lift that identifies roots of the polynomial in k with the roots in R.

We now define the Witt vectors:

Definition. The Witt vectors W (k) for a finite field k is the ring of integers OK , for K/Qp the unique
unramified extension of Qp with residue field k.

In other words, if k = Fpn then W (k) = Zp[µ] where µ is a primitive pn − 1th root of unity.

Proposition 4. Every ring R ∈ C has a canonical W (k) algebra structure, and so C = CW (k). In other
words W (k) is an initial object of C .

Proof. There is a unique map from Z to any ring R. Moreover, since Z is dense in Zp and R is a complete
ring with respect to the mR-adic topology, there is a unique map from Zp → R since morphisms in C
must be continuous.

Finally, let µ̄ be the image of µ in Fpn . Since morphisms in the category C must fix the residue field, µ
must be mapped to the Teichmüller lift of µ̄.

Thus there is a unique map from W (k) = Zp[µ] to R, and the map has been described above.

Proposition 5. Every element of CΛ is isomorphic to a quotient of a power series ring over Λ.

Proof. Let R ∈ CΛ and since R is Noetherian, the maximal ideal is finitely generated. Suppose mR =
(m1,m2, · · · ,mn). Consider the map:

φ : Λ[[X1, X2, · · · , Xn]] → R

given by Xi (→ mi and maps Λ to R canonically. This map surjects onto mR since its generators are in
the image, and it is well defined because R is complete. Given an element r ∈ R, since the map Λ → R
fixes the residue field, there is a λ ∈ Λ such that φ(λ)− r ∈ mR. But since φ surjects onto mR, it follows
that it must also surject onto R.

Thus R must be isomorphic to a quotient of Λ[[X1, X2, · · · , Xn]], as desired.
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2.3 The Deformation Functor

Let ρ̄ : Π → GLn(k) be a continuous group homomorphism. For a ring R in the category C , a lift of ρ̄
is a map ρ : Π → GLn(R) such that upon composing by the map π : GLn(R) → GLn(k), we get ρ̄. In
other words we want to look for maps ρ such that the following map commutes:

Π GLn(R)

GLn(k)

ρ̄

ρ

π

Now we define the notion of equivalence. Note that we can conjugate ρ by a matrix in M ∈ GLn(R) and
obtain another representation g (→ M−1ρ(g)M . However, after conjugating byM this new representation
may not restrict to ρ̄ upon projection onto GLn(k). So we want to impose a condition on M such that
it is the identity upon projecting to GLn(k). We make the definition:

Definition (Strict Equivalence). Let

Γn(R) = Ker (π : GLn(R) → GLn(k))

Then we say two lifts ρ1, ρ2 : Π → GLn(R) are strictly equivalent if there is a matrix M ∈ Γn(R) such
that for all g ∈ Π:

ρ1(g) = M−1ρ2(g)M

This is clearly an equivalence relation, so we write [ρ] to denote the strict equivalence class of ρ.

Using this definition, we can now define the notion of a deformation:

Definition (Deformation). A deformation of ρ̄ to R is a strict equivalence class of representations [ρ]
such that ρ : Π → GLn(R) is a lift of ρ̄.

Given a representation ρ̄ and a ring R ∈ C , we can find all possible deformations of ρ̄ to R. Let Dρ̄(R)
denote the set of all possible deformations. In other words. Let E(R) be set of all lifts of ρ̄ to R, then
the set Dρ̄(R) is:

Dρ̄(R) = E(R)/Γn(R)

Turns out this is actually a functor:

Proposition 6. Dρ̄ : C → Set is a functor.

Proof. Suppose that R1, R2 ∈ C and φ : R1 → R2 is a morphism in C . In other words φ is a ring map
that induces the identity map on the residue fields of R1 and R2.

We first need to define Dρ̄(φ) : Dρ̄(R1) → Dρ̄(R2). For [ρ] ∈ Dρ̄(R1), we define:

Dρ̄(φ)([ρ]) := [φ ◦ ρ]

We check that this is well defined. First of all, since φ induces the identity map on the residue fields, the
following diagram commutes:

GLn(R1)

Π GLn(k)

GLn(R2)

π

φ

φ◦ρ

ρ̄

ρ

π
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So φ ◦ ρ is indeed a lift of ρ̄, and so [φ ◦ ρ] ∈ Dρ̄(R2). Moreover, suppose [ρ] = [ρ′], then there is some
M ∈ Γn(R1) such that ρ(g) = M−1ρ′(g)M . Note that again by the fact that φ induces the identity on
residue fields, that φ(M) ∈ Γn(R2). Thus we have that:

φ(ρ(g)) = φ(M)−1φ(ρ′(g))φ(M)

Which implies [φ ◦ ρ] = [φ ◦ ρ′], and so Dρ̄(φ) is well defined.

Finally we check that Dρ̄ is actually a functor. However, this follows immediately from the definition
given since Dρ̄(φ ◦ ψ)(ρ) = (φ ◦ ψ) ◦ ρ = φ ◦ (ψ ◦ ρ) = Dρ̄(φ)Dρ̄(ψ)ρ.

We can similarly define Dρ̄,Λ for the restriction of Dρ̄ to the subcategory CΛ. Since the representation
ρ̄ is often fixed, if the context is clear this may be dropped from the notation, so we write D and DΛ

instead.

2.3.1 The Deformation Functor is Continuous

Next we want to show that the functor Dρ̄ is uniquely determined by where it sends elements of C 0. To
do that we first define the notion of a continuous functor on C .

Suppose F is a functor on C and R ∈ C has maximal ideal m. Then the quotient map R → R/mk

induces a map F (R) → F (R/mk) for each k. Thus these maps factor into a unique map:

F (R) → lim
←−

F (R/mk)

Note that since R is complete, R ∼= lim
←−

R/mk. We say that the functor F is continuous if the the functor

commutes with the action of profinite limit:

Definition. Suppose F is a functor on C . Then F is continuous if the natural morphism

F (R) → lim
←−

F (R/mk)

is in fact an isomorphism.

We now prove a lemma:

Lemma 7. The functor Dρ̄ is continuous.

This proof will largely follow the structure of the proof of Lemma 2.3 in [Gou08]. The difficulty of the
proof lies in the fact that the functor maps to equivalence classes of homomorphisms, rather than the
homomorphisms themselves.

Proof. We quote without proof the two following identities which can be easily checked:

GLn(R) = lim
←−

GLn(R/mk)

Γn(R) = lim
←−

Γn(R/mk)

Additionally, since the quotient mapR/mk+1 → R/mk is surjective, it follows that the maps GLn(R/mk+1) →
GLn(R/mk) and Γn(R/mk+1) → Γn(R/mk) are also surjective, since those maps are defined entry-wise.

The natural map Dρ̄(R) → lim
←−

Dρ̄(R/mk) sends the strict equivalence class of a representation ρ : Π →
GLn(R) to a sequence of classes of representations

!
[ρk : Π → GLn(R/mk)]

"
k∈Z+ where ρk is obtained

by composing ρ with the quotient map R → R/mk.

We first show that this map is surjective. Suppose that {[ρk]}k∈Z+ be an inverse sequence of represen-
tations, so ρk+1 composed with the quotient map GLn(R/mk+1) → GLn(R/mk) is strictly equivalent to
ρk. This means that there is some Mk ∈ Γn(R/mk) such that:
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ρk = M−1
k (ρk+1 mod mk)Mk

We can pick a lift Mk+1 ∈ Γn(R/mk+1) of Mk, and since we are working in the strict equivalence class
of representations, [ρk+1] = [M−1

k+1ρk+1Mk+1]. Without loss of generality we can replace ρk+1 with

M−1
k+1ρk+1Mk+1 instead, and in doing so we obtain that ρk = ρk+1 mod mk. Inductively we can choose

representatives ρk of [ρk] such that the sequence {ρk}k is compatible with quotient maps. Since we know
that GLn(R) = lim

←−
GLn(R/mk), then by the universal property of inverse limits there is a unique map

ρ that is compatible with all these maps. Thus [ρ] maps to this sequence, and the map is surjective.

Next we show that the map is injective. Suppose [ρ], [ρ′] ∈ Dρ̄(R) and ρk = ρ mod mk, and ρ′k = ρ′

mod mk. Then we want to show that if ρk is strictly equivalent to ρ′k for every k, then ρ is strictly
equivalent to ρ′.

If ρk is strictly equivalent to ρ′k then there exists Mk ∈ Γn(R/mk) such that ρk = M−1
k ρ′kMk. We can

pick Mk inductively such that Mk = Mk+1 mod mk, so using the fact that Γn(R) = lim
←−

Γn(R/mk),

there is a M ∈ Γn(R) that restricts to every Mk upon taking mod mk, and thus ρ = M−1ρ′M and so
the map is injective.

So the natural map is indeed bijective, which implies D is continuous.

This lemma is important because R/mk are objects of C 0, and the lemma shows that if we know the
values of the functor Dρ̄ on C 0, then we know the functor on all of C .

Note also that although the above proof was about the functor Dρ, the exact same proof will also show
that Dρ,Λ is continuous.

2.4 Representability

For R ∈ C , define the set-valued functor hR(−) = MorC (R,−). A functor F : C → Set is representable
if it is naturally isomorphic to the functor hR for some R.

Since we defined the set-valued functor Dρ̄ in the previous section, it is a natural question to ask whether
this functor is representable. If it is representable, then there exists some ring Rρ̄ such that for every
R ∈ C :

Dρ̄(R) = MorC (Rρ̄, R)

Suppose R = Rρ̄, and let the identity map on Rρ̄ correspond to a deformation ρ : Π → GLn(Rρ̄).

Since this is a natural transformation of functors, any deformation ρ of ρ̄ to a ring R must correspond
to a morphism ϕ : Rρ̄ → R, where ρ = ϕ ◦ ρ. In other words, every deformation of ρ̄ comes from the
composition of a ring morphism R → R and the deformation ρ.

Since every deformation can be obtained from the deformation ρ, we call this the Universal Deformation,
additionally we call Rρ̄ the Universal Deformation Ring of ρ̄.

The main result of section 3 will be to show that a Universal Deformation indeed exists. In this subsection
we show some necessary conditions for a general set-valued functor on the category C to be representable.

Suppose F is a functor and let α : A → C and β : B → C be morphisms in an arbitrary category C. If
the fibre product A ×C B exists, there there is a natural map from F (A ×C B) → F (A) ×F(C) F (B)
by the universal property of fibre products in Set, as seen in the below diagram.
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A×C B B

A C

π2

π1 □ β

α

####$F

F (A×C B)

F (A)×F(C) F (B) F (B)

F (A) F (C)

F(π2)

F(π1) □ F(β)

F(α)

Definition. If this map is a bijection and F (A×C B) = F (A)×F(C) F (B) for every A,B,C, then we
say that F satisfies the Mayer Vietoris Property.

Proposition 8. If F is a representable functor, then it satisfies the Mayer-Vietoris Property.

Proof. If F is representable, then there exists an object D ∈ C such that F = Mor(D,−)

Then it suffices to prove that:

Mor(D,A×C B) = Mor(D,A)×Mor(D,C) Mor(D,B)

However, this is tautological with the universal property of the fibre product. An object in Mor(D,A)×Mor(D,C)

Mor(D,B) is a pair of morphisms from D to A and B that agree on C, but by the universal property of
fibre products these maps must uniquely factor through A×C B. Thus the two sets are equal.

We have proved that the Mayer Vietoris Property is a necessary condition for a functor to be repre-
sentable, but it is not very useful in the category C . This is because fibre products need not exist
because the fibre product of Noetherian Rings need not be Noetherian.

Consider the map k[[X,Y ]] → k[[X]] given by Y (→ 0 and the inclusion k ↩→ k[[X]]. These are all
objects and maps in the category C , however their fibre product is the ring k+ k[[X,Y ]]Y , which is not
Noetherian because the ideal I = (XY,X2Y,X3Y, · · · ) ⊆ k + k[[X,Y ]]Y is not finitely generated. Thus
the fibre product is not in the category C .

However, hope is not lost, as it turns out fibre products exist in C 0:

Proposition 9. Fibre products exist in the category C 0
Λ.

Proof. Suppose α : A → C, β : B → C be morphisms of objects in C 0
Λ. We wish to show that the ring

D := A×C B is local Artinian with residue field k. Note D is the subring of A×B consisting of elements
(a, b) where α(a) = β(b). Let πA,πB ,πC be the projection maps from D to A,B,C respectively.

Then consider the ideal I = π−1
A (mA) = π−1

B (mB) = π−1
C (mC). This is the preimage of a prime ideal and

is thus prime. On the other hand, any x ∈ D \ I will map to units xA, xB under the projections πA,πB

and they agree upon mapping to C. Then the pair (x−1
A , x−1

B ) also agrees upon mapping to C, and thus
defines an element in D which is inverse to x. So any element in D \ I is a unit, and thus this ideal I is
indeed maximal, and D is local.

The map D → A → A/mA
∼= k is surjective and has kernel containing I, but since I is maximal and the

map is non-zero the kernel is equal to I. This means that D/I ∼= k and so D has residue field k.

To see that D is Artinian, we show that it has finite length as a Λ-module. Since A and B are Artinian,
they have finite length as Λ-modules. Then A×B is a finite length Λ-module which implies D ⊆ A×B
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also has finite length as a Λ-module. Thus D is an Artinian Λ-Algebra, and we conclude that D is in
C 0
Λ.

Because fibre products exist in C 0, it makes a lot more sense to work in this category instead, but in
order to do this we need a result that tells us whether F is representable on C by only looking at C 0.
To do this we define the concept of pro-representability :

Definition. Let F be a functor on C 0, we say that F is pro-representable if there exists an object R
in the larger category C such that for S ∈ C 0:

F (S) = MorC (R, S)

In general pro-representability on C 0 does not imply representability on C , but if our functor is continuous
then they are in fact equivalent statements:

Lemma 10. Suppose F is a continuous functor on C . Then F is pro-representable on C 0 if and only
if F is representable on C .

Proof. The reverse direction is clear, so it suffices to only show that a pro-representable functor is also
representable.

Suppose F is pro-representable and represented by R ∈ C , and R is an object in C . Since F is
continuous we know that:

F (R) = lim
←−

F (R/ms) = lim
←−

Mor(R, R/ms)

But by the universal property of inverse limits, the maps R → R/ms must all factor uniquely through
a map R → R. This means that any element in the set lim

←−
Mor(R, R/ms) corresponds uniquely to a

morphism Mor(R, R) and vice versa, thus F (R) = Mor(R, R) and F is representable.

2.5 Some Galois Theory

Given an infinite field extension L/K, the Galois group Gal(L/K) is defined to be the inverse limit
lim
←−

Gal(L′/K) as L′ ranges all finite subextensions L/L′/K. The Galois group is equipped with the

profinite topology.

In particular, given a field K, we write GK = Gal(K̄/K) for the absolute Galois group of K.

Moreover, if K is a number field and S is a set of primes in K including the primes at infinity, then
let KS denote the maximal extension of K that is unramified outside of the set of primes S. We write
GK,S = Gal(KS/K).

Proposition 11. Let K be a finite extension of Qp. Then GK satisfies the Φp condition.

Proof. By a theorem in Local Fields, there are only finitely many extensions of K of any given degree.
So in particular there are only finitely many extensions L/K of degree p.

For any non-trivial continuous homomorphism φ : GK → Z/pZ, Kerφ has index p, which means that field
fixed by Kerφ has degree p overK. Given a fixed Kerφ, there are exactly p−1 nontrivial homomorphisms
from GK/Kerφ → Z/pZ, so each degree p extension of K corresponds to exactly p − 1 nontrivial
homomorphisms. Since there are only finitely many degree p extensions, this proves that there are only
finitely many continuous homomorphisms GK → Z/pZ and thus GK satisfies Φp.

Proposition 12. Suppose the set S contains all primes lying above p. Then GK,S satisfies the Φp

condition. [Tia14]

Proof. This follows from the Hermite-Minkowski Theorem, which states that there are only finitely many
number fields with bounded discriminant.

Suppose L/K is a degree p extension that is unramfied outside S. Then for q /∈ S, Lq/Kq is unramified
and thus has discriminant dLq/Kq

= 1.
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If q ∈ S, then Lq/Kq is a field extension degree p. There are only finitely many local field extensions of
a fixed degree, and let dq be the maximal discriminant out of all extensions of degree p.

Let d =
%

q∈S

dq. Then note that by the identity:

dL/K =
%

q

dLq/Kq

It follows that if L/K is a degree p extension that is unramified outside of S, it must have discriminant
less than d. Thus by the Hermite-Minkowski theorem, there are only finitely many such extensions.

Thus we have shown that there are finitely many extensions of K that are of degree p and unramified
outside of S, so by the same argument as the previous proof, there are only finitely many continuous
homomorphisms GK,S → Z/pZ and thus condition Φp is satisfied.

While most of this essay will focus on when Π is an arbitrary profinite group that satisfies the Φp

condition, the above two propositions show that all discussion regarding general Π will apply when we
consider the above Galois groups

2.6 Galois Cohomology

We define the notion of a group cohomology, and a Galois cohomology is simply the group cohomology
of a Galois group. Let G be a group, and M a G-module.

Let MG denote the G-invariant elements of M , i.e. MG = {m ∈ M |∀g ∈ G : gm = m}.
We can think of the map M (→ MG as a functor ModG → AbGrp from G-modules to abelian groups.
This functor is isomorphic to the functor HomG(Z,−). Where Z is given the trivial G module structure.
Any G-module homomorphism Z → M is uniquely determined by the image of 1 and since g1 = 1 is
G-invariant it follows that the image of 1 must also be G-invariant. Giving HomG(Z,M) the structure
of a group by pointwise addition, we find that MG ∼= HomG(Z,M)

Since the Hom functor is left exact, it follows that (−)G is also a left exact functor. The group cohomology
H∗(G,M) measures the failure of this functor to be right exact.

Definition (Group Cohomology). We pick an injective resolution of M :

0 → M → I0
d0

−→ I1
d1

−→ I2
d2

−→ · · ·

And upon applying the functor (−)G we obtain a chain complex which is no longer neccesarily exact:

0 → (I0)G
d0

−→ (I1)G
d1

−→ (I2)G
d2

−→ · · ·

As with usual cohomology, we define the cohomology groups to be the kernel of the differential maps
quotiented by the image:

Hi(G,M) :=
Ker di

Im di−1

Noting that the functors (−)G and HomG(Z,−) are isomorphic, one can think of the group cohomology
as the Ext cohomology over G-modules:

H∗(G,M) = Ext∗G(Z,M)

2.6.1 Explicit Description of Cochains, Cocycles, Coboundaries

From properties of Ext we can deduce that for any G-module M , we have that H0(G,M) = MG.



Deforming Galois Representations 11

For higher cohomologies, we can also explicitly describe the cochains, cocycles, and coboundaries for the
rth cohomology. This description also follows from properties of Ext and is taken from [Mil20].

The cochains Cr(G,M) correspond to the set:

Cr(G,M) = {set maps Gr → M}

We define the differential map dr : Cr(G,M) → Cr+1(G,M). Suppose φ : Gr → M is an element of
Cr(G,M). Then we have that:

(drφ)(g1, g2, · · · , gr+1) =g1φ(g2, · · · , gr+1)

+

r&

j=1

(−1)jφ(g1, · · · , gjgj+1, · · · , gr+1)

+ (−1)r+1φ(g1, · · · , gr)

Where an element of G written outside of φ is to be interpreted as the group action of G on M , and the
sum in the middle essentially concatenates consecutive terms.

Define the set of cocycles to be Zr(G,M) = Ker dr and the set of coboundaries Br(G,M) = Im dr−1.
Then we have that the group cohomology is in fact isomorphic to:

Hr(G,M) =
Ker dr

Im dr−1
=

Zr(G,M)

Br(G,M)

In particular we write down the first and second cocyles and coboundaries explicitly, for r = 1 we have
the sets:

Z1(G,M) = {φ : G → M |φ(gh) = φ(g) + gφ(h)}
B1(G,M) = {φ : g (→ gm−m|m ∈ M}

For r = 2 we have that the cocycles Z2(G,M) are given by cochains φ : G2 → M such that:

g1φ(g2, g3) = φ(g1g2, g3)− φ(g1, g2g3) + φ(g1, g2)

And the coboundaries B2(G,M) are given by maps that look like:

(g1, g2) (→ g1ϕ(g2)− ϕ(g1g2) + ϕ(g1)

For any arbitrary map ϕ ∈ C1(G,M).

2.7 The Tangent Space

Suppose R ∈ CΛ is a Λ-algebra. We define the Zariski Cotangent Space to be:

t∗R = mR/(m
2
R,mΛ)

where (m2
R,mΛ) is the ideal generated by m2

R and by the image of mΛ in R. Noting that t∗R has a
Λ/mΛ

∼= k-module structure, the Zariski cotangent space is in fact a k-vector space. We define the
Zariski tangent space to be the dual of the cotangent space:

tR = Homk(t
∗
R, k)

Notice a morphism A → B in the category CΛ induces a map of tangent spaces f∗ : tB → tA. Moreover,
if f is surjective then it induces a surjection between the maximal ideals of A and B, and thus a surjection
f∗ : t∗A ↠ t∗B . This in turn implies that the dual map f∗ is injective.

We define the ring of dual numbers to be k[ε] ∼= k[X]/(X2).
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Lemma 13. For a ring R ∈ CΛ, there is a natural bijection of sets:

tR ∼= HomΛ(R, k[ε])

Where HomΛ refers to a homomorphism in the category CΛ.

Proof. Suppose φ ∈ HomΛ(R, k[ε]), then for r ∈ R, we have φ(r) = r̄ + ϕ(r)ε. Where r̄ ∈ k is the
reduction of r modulo m and ϕ : R → k is a map of Λ-modules since it should commute with addition
and scalar multiplication.

By considering R as a Λ-module, we can canonically write R ∼= k⊕mR from lemma 3. But φ sends k to
itself, so ϕ is uniquely determined by where it sends mR.

Since φ(m) = ϕ(m)ε for any m ∈ mR, it follows from ε2 = 0 that φ(m2
R) = 0, and so ϕ(m2

R) = 0.
Additionally, since R is a Λ algebra and the map Λ → k[ε] sends mΛ to zero it follows that ϕ(mΛ) = 0
as well.

Thus the ϕ factors through the quotient by (m2
R,mΛ) and gives a map mR/(m

2
R,mΛ) → k. This is a map

of Λ/mΛ-modules, which are k vector spaces. Conversely, any such map determines a unique ϕ, and thus
the sets are in bijection.

Corollary 14. If F is a representable functor represented by the ring R, then the tangent space of the
ring representing F , tR is in bijection with the F (k[ε]) = HomΛ(R, k[ε]).

We have shown that F (k[ε]) has a k-vector space structure if F is representable. But we can in fact
give F (k[ε]) a vector space structure as long as it satisfies a special case of the Mayer Vietoris property:

Proposition 15. Consider the fibre product k[ε] ×k k[ε] given by the maps k[ε] → k which send ε to
zero. Suppose the natural map F (k[ε] ×F(k) k[ε]) → F (k[ε]) ×F(k) F (k[ε]) is a bijection, and that
F (k) contains a single element. Then there is a natural k-vector space structure.

Proof. The key to this proof is to first define a notion of addition and scalar multiplication on k[ε], and
then use the functoriality of F to define addition and scalar multiplication on F (k[ε]). Note that since
F (k) consists of a single element, fibred products over F (k) is the same as the direct product. Thus:

F (k[ε])×F(k) F (k[ε]) ∼= F (k[ε])× F (k[ε])

Elements of k[ε]×k k[ε] are pairs of elements (x1 + y1ε, x2 + y2ε) such that they agree upon restricting
to k, so we must have that x1 = x2. Consider the map p : k[ε]×k k[ε] → k[ε] given by:

p : (x+ y1ε, x+ y2ε) (→ x+ (y1 + y2)ε

One can check that this is a well-defined Λ-algebra morphism.

Since we assumed that there is a bijection F (k[ε])×F (k[ε]) ∼= F (k[ε]×k k[ε]), we identify the two sets
and apply F (p) in order to define addition on the set F (k[ε]):

(a, b) ∈ F (k[ε])×k F (k[ε]) ∼= F (k[ε]×k k[ε])
F(p)−−−→ F (k[ε]) ∋ a+ b

To define scalar multiplication we note that the map tλ : k[ε] → k[ε] given by:

x+ yε (→ x+ λyε

is also a morphism of Λ-algebras for any λ ∈ k. Then we simply can define multiplication by a scalar in
F (k[ε]) to be the application of the functor F (tλ). In other words, for a ∈ F (k[ε]):

λ · a = F (tλ)(a)

We now check that addition and scalar multiplication distributes as they should in a vector space, but
again by functoriality it simply suffices to check this on k[ε].
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For example x+ y1ε, x+ y2ε ∈ k[ε], then:

tλ(p(x+ y1ε, x+ y2ε)) = tλ(x+ (y1 + y2)ε)

= x+ λ(y1 + y2)ε

= p(x+ λy1ε, x+ λy2ε)

= p(tλ(x+ y1ε), tλ(x+ y2ε))

Thus scalar multiplication distributes over the addition of vectors. The other vector space axioms can
be checked similarly. Thus we have given F (k[ε]) a vector space structure.
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3 Universal Deformation Rings

3.1 Statement of Main result

Suppose ρ : Π → GLn(A) for A ∈ CΛ is a lift of the representation ρ̄. Note that An can be given the
stricture of a Π-module through the action ρ. i.e. g ∗M = ρ(g)M for M ∈ An.

We now define CA(ρ) to be the set of Π-module endomorphisms of An. Clearly any such endomorphism
is also a linear map An → An, and thus an element of Mn(A). However this linear map P ∈ Mn(A)
must also commute with the action of Π in order for it to be Π-module homomorphism. Thus:

Definition.
CA(ρ) := HomΠ(A

n, An) = {P ∈ Mn(A)|∀g ∈ Π : Pρ(g) = ρ(g)P}

This is the set of all elements of Mn(A) which commute with ρ(g) for all g.

In particular, we are interested in the case where Ck(ρ̄) = k. In other words, this means that the only
matrices that commute with ρ̄ are the scalar matrices. This may seem like an arbitrary condition, but
turns out absolutely irreducible representations satisfy this property.

Definition (Absolutely irreducible representations). A representation ρ : G → GLn(k) is irreducible if
it has no G-invariant subspace.

It is absolutely irreducible if for every field extension k′/k, the representation ρ ⊗ k′ : G → GLn(k
′) is

irreducible.

Proposition 16. If ρ̄ : Π → GLn(k) is absolutely irreducible representation, then Ck(ρ̄) = k.

Proof. Let k̄ be the algebraic closure of k and consider the representation ρ̄⊗ k̄ : Π → GLn(k̄). By our
assumption, this is an irreducible representation.

By Schur’s lemma from representation theory we know that the only Π-endomorphisms of an irreducible
representation are the scaling maps. So in other words we know that Ck̄(ρ̄⊗ k̄) = k̄.

However, any element of Ck(ρ̄) will extend to a Π-endomorphism over k̄, i.e. an element in Ck̄(ρ̄⊗ k̄) = k̄.
Thus elements in Ck(ρ̄) can only be scalar matrices. Since all scalar matrices commute with ρ̄, we conclude
that Ck(ρ̄) = k.

We are now ready to state the main theorem of this section:

Theorem 17 (Existence of Universal Deformation Ring). Suppose that Π is a profinite group satisfying
condition Φp and ρ̄ : Π → GLn(k) is a representation such that Ck(ρ̄) = k.

Then there exists a ring R = R(Π, k, ρ̄) in CΛ and a deformation ρ : Π → GLn(R) of ρ̄ such that every
other deformation ρ : Π → A is given uniquely by a morphism R → A.

The rest of this section will be working towards a proof of this result.
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3.2 Schlessinger’s Criteria

The Schlessinger’s Criteria are a series of conditions that specify when a functor F : C 0
Λ → Set is

pro-representable. We first define the notion of a small homomorphism:

Definition. A homomorphism φ : R → S is small if it is surjective and Ker(φ) is principal and annihi-
lated by mR.

Now suppose we have rings R0, R1, R2 ∈ C 0
Λ, and morphisms φ1 : R1 → R0;φ2 : R2 → R0. Then let

R3 := R1 ×R0 R2. For a functor F there is a natural map F (R3) → F (R1) ×F(R0) F (R2), from the
universal property of fibre product, illustrated in the below diagram. We label this map ψ.

F (R3)

F (R1)×F(R0) F (R2) F (R2)

F (R1) F (R0)

F(π2)

F(π1)

ψ

□ F(φ2)

F(φ1)

We now state the Schlessinger Criteria:

Definition. The following are the Schlessinger Criteria:

H1. If the map R2 → R0 is small, then ψ is surjective.

H2. If R0 = k and R2 = k[ε], then ψ is bijective.

H3. The k-vector space tF = F (k[ε]) is finite dimensional.

H4. If R1 = R2, and φ1 = φ2 are small maps from R1, R2 to R0, then ψ is bijective.

Note that the statement of H3 makes sense if condition H2 is true, since the statement H2 implies
that the assumptions in proposition 15 are true, and thus F (k[ε]) can indeed be given a vector space
structure.

It turns out these 4 criteria are sufficient to ensure that F is pro-representable:

Theorem 18 (Schlessinger). Let F be functor on C 0
Λ such that F (k) has 1 element. Then if F satisfies

the Schlessinger Criteria H1-H4 then F is pro-representable.

The proof of this theorem is omitted and but can be found at [Sch68]. This theorem implies that we
simply need to show that the functor DΛ satisfies the 4 Schlessinger Criteria in order to prove Theorem
17.
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3.3 Universal Deformation Rings Exist!

We now prove the main result of this section: that a universal deformation ring indeed exists. We show
that DΛ is representable by showing that it satisfies the 4 Schlessinger Criteria. This entire subsection
will closely follow the proof that was given in [Gou08]

As with the previous section, we let R0, R1, R2 ∈ C 0
Λ and R3 = R1 ×R0 R2. For each i, we define

Ei = E(Ri) to be the set of lifts (before taking equivalence classes) of ρ̄ to Ri. Then we can write:

DΛ(Ri) = Ei/Γn(Ri)

In this case, our map ψ can be written in the form:

ψ : E3/Γn(R3) → E1/Γn(R1)×E0/Γn(R0) E2/Γn(R2)

We define a set:

Definition. Suppose φi ∈ Ei be a lift of ρ̄ to Ri. Then we define:

Gi(φi) = {M ∈ Γn(Ri)|M commutes with the image of φi}

This is very similar to the definition CRi
(φi), but we only take matrices in Γn(Ri) rather than all of

Mn(Ri), so CRi(φi) is a ring while Gi(φi) is a group.

We now prove a series of lemmas:

Lemma 19. DΛ satisfies property H1: If the map R2 → R0 is small, then ψ is surjective.

Proof. An element of DΛ(R1) ×DΛ(R0) DΛ(R2) is simply a pair of deformations ([φ1], [φ2]) that agree
upon mapping to R0. To show that ψ is surjective, we need to find an element [φ] ∈ DΛ(R3) that
restricts to [φ1] and [φ2].

Since [φ1] and [φ2] agree upon mapping to R0, there is some M ∈ Γn(R0) such that conjugating the
image of φ2 by M gives the image of φ1. However, since small maps are surjective and R2 → R0 is a
small map, this implies that there is a lift M ∈ Γn(R2) of M such that M−1φ2M and φ1 map to the
same element in E0.

This in turn implies that φ1 and M−1φ2M specify an element φ3 ∈ E3, and [φ3] maps to the pair
([φ1], [φ2]), so this shows that ψ is indeed surjective.

It should be noted that the only property of R2 → R1 being small that was used was the fact that the
map is surjective. We now prove a lemma that gives us a sufficient condition for ψ to be injective:

Lemma 20. Let φ2 ∈ E2 and φ0 ∈ E0 be its image after composing with R2 → R0. Suppose the map
G2(φ2) → G0(φ0) is surjective for all φ2 ∈ E2. Then the map ψ is injective.

Where the map G2(φ2) → G0(φ0) stated in the lemma is simply the restriction of the Γn(R2) → Γn(R0)
map.

Proof. Suppose [φ], [ϕ] ∈ DΛ(R3) are deformations of ρ̄ such that they have the same image under
ψ : DΛ(R3) → DΛ(R1) ×DΛ(R0) DΛ(R2). Suppose φi,ϕi ∈ Ei are the lifts to Ri that are induced by
φ,ϕ. Then [φ], [ϕ] having the same image under ψ implies that φi is strictly equivalent to ϕi for i = 1, 2.

Let Mi ∈ Γn(Ri) be the matrices such that φi = M−1
i ϕiMi for i = 1, 2. Since these maps should agree

upon mapping down to E0, we have:

φ0 = M1
−1

ϕ0M1 = M2
−1

ϕ0M2

whereMi is the image ofMi upon mapping to Γn(R0). Note that the above equality impliesM2M1
−1

ϕ0 =

ϕ0M2M1
−1

.
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This means M2M1
−1

commutes with the image of ϕ0, so M2M1
−1 ∈ G0(ϕ0).

Now we use the fact that the map G2(ϕ2) → G0(ϕ0) is surjective to find some N ∈ G2(ϕ2) such that N

maps to M2M1
−1

. Let N2 = N−1M2, then note that since N commutes with ϕ2 we have:

φ2 = M−1
2 ϕ2M2 = M−1

2 Nϕ2N
−1M2 = N−1

2 ϕ2N2

Moreover N2 reduces to M1 upon mapping to Γn(R0). This means (M1, N2) ∈ Γn(R1) × Γn(R2) in
fact specifies an element of Γn(R3). Call this element M ∈ Γn(R3). Then this element in fact satisfies
φ = M−1ϕM . This implies that [φ] = [ϕ], and so the map ψ is indeed injective.

We now prove that H2 is satisfied, but this is a simple corollary of Lemma 20.

Lemma 21. DΛ satisfies property H2: If R0 = k and R2 = k[ε], then ψ is bijective.

Proof. Note that the map k[ε] → k is small, so by the H1 we know that ψ is surjective.

On the other hand, in order to show that ψ is injective, from Lemma 20 it suffices to show that the map
G2(φ2) → G0(φ0) is surjective for all φ2 ∈ E2.

Since we know that R0 = k, by definition Γn(R0) must contain only the identity matrix. Since G0(φ0)
is a subgroup of Γn(R0) it must also be the group with 1 element. Thus any map G2(φ2) → G0(φ0) ∼= 1
must be surjective. This concludes the proof.

Now we move onto H3. We first prove a lemma about Γn(k[ε]).

Lemma 22. The group Γn(k[ε]) is finite, and p-elementary abelian (every non-identity element has
order p, or the group has exponent p).

A direct corollary of this lemma is that by the structure theorem on finitely generated abelian groups,
Γn(k[ε]) is isomorphic to (Z/pZ)N for some integer N .

Proof. If M ∈ Γn(k[ε]) it must reduce to the identity matrix after reducing to GLn(k), then as a matrix
it must be of the form M = In +Nε, where N ∈ Mn(k).

Note that each entry in the matrix N must be in k which is a finite field of characteristic p. This means
that there are precisely |k|n2

possible matrices N , and this number is also the size of Γn(k[ε]). So we
have shown that Γn(k[ε]) is a finite p-group.

To show that the group is abelian and has exponent p, we use the fact that ε2 = 0. Suppose I+N1ε, I+
N2ε ∈ Γn(k[ε]), then we have:

(I +N1ε)(I +N2ε) = I +N1ε+N2ε = (I +N2ε)(I +N1ε)

(I +N1ε)
p = I + pN1ε+ ε2(· · · ) = I

So Γn(k[ε]) is abelian, and every element has order dividing p, which means all non-identity elements
have order exactly p.

Equipped with this lemma, we prove the third Schlessinger Criteria. Note that the Φp condition is used
in the proof of H3.

Lemma 23. DΛ satisfies property H3: The vector space tDΛ
= DΛ(k[ε]) is finite dimensional.

Proof. Define Π0 = Ker(ρ̄ : Π → GLn(k)), and let ρ : Π → GLn(k[ε]) be a lift. Then by definition ρ(Π0)
must map to the identity upon composing with the projection k[ε] → k, so ρ(Π0) ⊆ Γn(k[ε]).

Now note that Π0 is an open subgroup of Π and has index dividing GLn(k) which is finite. So using
condition Φp we know that there are only a finite number of continuous homomorphisms Π0 → Z/pZ.
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This in turn implies that there are only a finite number of homomorphisms Π0 → Γn(k[ε]) ∼= (Z/pZ)N
by the previous lemma.

Fix a set S = {π1, · · · ,πr} of coset representatives of Π/Π0. Note that this set is finite because Π0 has
finite index. Then since GLn(k[ε]) is also a finite set, there are only finitely many set maps S → GLn(k[ε]).

Note that any homomorphism Π → GLn(k[ε]) is uniquely determined by where it sends Π0 and the
coset representatives S. (While not every pair of maps from Π0 and S will give a well-defined group
homomorphism, every homomorphism will uniquely come from such a pair of maps). Since there are a
finite number of homomorphisms from Π0 and a finite number of set maps from S, it follows that there
can only be a finite number of lifts ρ : Π → GLn(k[ε]).

Thus DΛ(k[ε]) is a quotient of the set of lifts which is still a finite set. This implies that it is indeed
finite dimensional as a k-vector space.

The first 3 Schlessinger Criteria are true in general, but in order to prove H4 we need to impose the
additional condition on ρ̄ that Ck(ρ̄) ∼= k, i.e. the matrices that commute with ρ̄ are only the scalar
matrices. We first prove two lemmas, the first is about small morphisms, and the second is about the
Ck(ρ̄) ∼= k condition.

Lemma 24. If A,B ∈ C 0
Λ and A → B is a surjective homomorphism, then the homomorphism can be

factored into a chain
A = A0 → A1 → · · · → AN = B

where each Ai is in C 0
Λ and each morphism Ai → Ai+1 is a small map.

Proof. Recall that a homomorphism R → S is small if it is surjective and has a principal kernel that is
annihilated by the maximal ideal of the domain mR. Suppose φ : A → B is a surjective map and let
Kerφ = I.

Note that since A is Artinian and local, so its maximal ideal is the only prime ideal, so its maximal ideal
mA an nilradical co-incide, and thus mA is nilpotent (the nilradical is nilpotent in Noetherian rings).
Suppose ms

A = 0, then consider the chain:

A = A/(0) = A/Ims
A → A/Ims−1

A → · · · → A/ImA → A/I = B

Where the map A/Imr
A → A/Imr−1

A is the natural quotient map with kernel mr−1
A , which is annihilated

by mA, the maximal ideal of A/Imr
A.

So now we can assume without loss of generality that Kerφ = (a1, a2, · · · , ar) is annihilated by the
maximal ideal mA. Consider the sequence:

A → A/(a1) → A/(a1, a2) → · · · → A/(a1, a2, · · · , ar) = B

Each map has a kernel of the form (ai) which is principal, and annihilated by the maximal ideal of the
domain. This finishes the proof.

Lemma 25. Suppose Ck(ρ̄) = k. Then for any deformation ρ of ρ̄ to an Artinian ring A ∈ C 0
Λ, we have

CA(ρ) = A. i.e. The only matrices in CA(ρ) are the scalar matrices.

In particular, this implies that the for any i, Gi(φi) consists of only scalar matrices in Γn(Ri)

Proof. Since the quotient map A → A/mA
∼= k is surjective, by lemma 24 we can split this into a chain

of small morphisms and induct. i.e. It suffices to prove that if φ : A → B is a small morphism and
CB(ρB) = B, then we must have CA(ρA) = A.

Suppose Q ∈ CA(ρA). Then Q commutes with the image of ρA. Upon composing with the map A → B
we find that the image of Q must also commute with the image of ρB , thus the image of Q must be in
CB(ρB), i.e it must be a scalar.
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Let Q (→ b ∈ B. However, since A → B is a surjection, there is a scalar a ∈ A that maps to b. Then
since Q can be written as a + M ′ where M ′ maps to the 0 matrix. We know that A → B is a small
morphism, so it has principal kernel, say (t). Then M ′ = tM for some M ∈ Mn(A).

So since Q = a+ tM commutes with ρA, for each g ∈ Π we have (a+ tM)ρA(g) = ρA(g)(a+ tM)

This simplifies to ρA(g)M = MρA(g). By composing with the reduction A → k, we know that the image
of M must commute with ρ̄ and thus is in Ck(ρ̄) = k.

This implies that M = r+M ′′, where r ∈ A is a scalar and M ′′ is a matrix with entries in the maximal
ideal mA. Noting that the ideal t is annihilated by the maximal ideal, we know that tM ′′ = 0 and thus
Q = a+ t(r +M ′′) = a+ tr is a scalar, as desired.

Finally, we show that H4 is true under our assumption:

Lemma 26. If Ck(ρ) = k, then H4 is true: If R1 = R2, and φ1 = φ2 are small maps from R1, R2 to
R0, then ψ is bijective.

Proof. From H1 we know that ψ is surjective, so it suffices to show injectivity. To do so, we wish to
show that G2(φ2) → G1(φ1) is surjective so we can apply lemma 20.

From the previous lemma, we know that Gi(φi) consists of only scalars. In particular Gi(φi) ⊆ Γn(Ri)
are the scalars that map to the identity upon quotienting by the maximal ideal, so Gi(φi) is precisely
the set 1 +mRi .

We know that the map R2 → R0 is surjective because it is small, and since the morphisms in CΛ fixes
the residue field of the rings, this surjective map restricts to G2(φ2) = 1 + mR2 ↠ 1 + mR0 = G0(φ0).
Thus we conclude that ψ is injective and thus bijective.

Finally we can prove Theorem 17:

Proof of Theorem 17. The theorem follows immediately from Lemmas 19, 21, 23, and 26.
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4 Universal Deformation Rings in 1 dimension

In this section we study the case where n = 1 and we have a residual representation ρ̄ : Π → GL1(k) ∼= k×.
Note that the group GLn(R) is always abelian at n = 1, and since strict equivalence is defined up to
conjugation, and conjugation in an abelian group is trivial, a deformation and a lift are the same thing
in the 1-dimensional case.

Let Γ = Πab,(p) be the abelianisation of the pro-p completion of Π, then if G is any abelian pro-p group,
any homomorphism Π → G must uniquely factor through the projection γ : Π → Γ, by the universal
property of the abelianisation and pro-p completion of a group.

For a Λ ∈ C , we define the notion of a completed group ring :

Definition. We define the completed group ring Λ[[Γ]] to be the inverse limit of group rings Λ[Γ/H] as
H ranges over open normal subgroups of finite index of Γ:

Λ[[Γ]] = lim
←−

Λ[Γ/H]

It is true that Λ[[Γ]] is an element of CΛ, we will show that ρ̄ is in fact represented by this ring.

By lemma 3 there is a Teichmüller lift k× → Λ×, so we can lift the representation ρ̄ to Λ by composing
with the Teichmuller lift, obtaining a representation ρ0 : Π → GL1(Λ) ∼= Λ×.

Theorem 27. The universal deformation ring for ρ̄ is R = Λ[[Γ]] and the universal deformation is given
by:

ρ(g) = ρ0(g)[γ(g)]

Proof. Let Γ be generated as a group by elements g1, · · · , gr. Then as a result there is a surjective ring
homomorphism Λ[[X1, · · · , Xr]] → Λ[[Γ]]

Now suppose ρ : Π → A× is a lift of ρ̄ to A ∈ CΛ. Then consider the map ψ(g) = ρ(g)/ρ0(g), since the
maps ρ, ρ0 agree when restricted to k×, this means that ψ takes values in 1 +mA.

The group 1 + mA = lim
←−

'
1 +mi

A/m
i+1
A

(
is an abelian pro-p group, so the map ψ : Π → 1 + mA factors

through the abelianised pro-p quotient Γ, this gives a map fρ : Γ → 1 +mA.

Π Γ

1 +mA

ψ

γ

fρ

The map fρ extends to a homomorphism of Λ-algebras fρ : Λ[[Γ]] → A. Note that this implies that
ρ = fρ ◦ ρ.
Thus this implies that every representation ρ that lifts ρ̄ is given by the composition of ρ with fρ. So
Λ[[Γ]] and ρ are the universal deformation ring and universal deformation of ρ̄ respectively.



Deforming Galois Representations 21

5 Universal Deformation Rings in Higher Dimensions

5.1 Tangent Space Revisited

We first define the adjoint representation of a residual representation ρ̄:

Definition. Let Π act on the set of matricesMn(k) via conjugation by ρ̄. i.e. for any matrixM ∈ Mn(k):

g ·M = ρ̄(g)M ρ̄(g)−1

Viewing Mn(k) as a n2 dimensional k vector space, this gives a representation of Π. Call this the Adjoint
Representation of ρ̄ and denote this by Ad(ρ̄). Representations of Π can be viewed as Π-modules, so
Ad(ρ̄) is a Π-module.

We will now show that the tangent space of D is in fact isomorphic to the first group cohomology of the
adjoint representation:

Proposition 28. Let tD = HomΛ(R, k[ε]) denote the tangent space of the functor DΛ. then we have
an isomorphism:

tD ∼= H1(Π,Ad(ρ̄))

Proof. Let ρ be a deformation of ρ̄ to the ring of dual numbers k[ε]. Then if g ∈ Π and ρ̄(g) = Ag ∈
GLn(k), we must have that ρ(g) = Ag +Mgε for some Mg ∈ Mn(k), noting that A is invertible we can
write this as:

ρ(g) = (I +Ngε)Ag

Noting that ρ should be a homomorphism of groups, we have that:

(I +Nghε)A = (I +Ngε)Ag(I +Nhε)Ah

= (I +NgAgε+AgNhε)Ah

= (I +Ngε+AgNhA
−1
g ε)Agh

Consider the map φ : Π → Mn(k) given by g (→ Ng, then viewing Mn as the Π-module Ad(ρ̄). We have
that φ satisfies:

φ(gh) = φ(g) + g · φ(h)

This is precisely the condition needed for a map Π → Ad(ρ̄) to be a 1-cocyle, so φ is a cocycle.

On the other hand, suppose ρ′ is another representation that is strictly equivalent to ρ. Then there exists
I + Tε ∈ Γn(k[ε]) such that (note that (I + Tε)(I − Tε) = I):

ρ′(g) = (I + Tε)ρ(g)(I + Tε)−1

= (I + Tε)(I +Ngε)Ag(I − Tε)

= Ag + TAgε+NgAgε−AgTε

= (I + Tε+Ngε−AgTA
−1
g ε)Ag

So the cocycle associated to ρ′ is the map g → Ng + T −AgTA
−1
g

The difference between these two cocycles is the map g → T −AgTA
−1
g = T − g · T , which is precisely a

coboundary.

Noting that there any lift ρ uniquely determines a cocycle φ and vice versa, we have proved that the set
of deformations is of ρ̄ is isomorphic to the first cohomology group H1(Π,Ad(ρ̄).

We conclude the proof by noting that by Corollary 14, the tangent space is isomorphic to D(k[ε]).

We have a corollary:

Corollary 29. Let d1 = dimH1(Π,Ad(ρ̄)). Then there is a surjection Λ[[X1, X2, · · · , Xd1 ]] ↠ R. In
order words, the universal deformation ring R is isomorphic to a quotient of the power series ring over
Λ in d1 variables.
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Proof. By the previous proposition, we know that d1 is the dimension of the tangent space DΛ. But the
tangent space and cotangent space have the same dimension, so we have that:

d1 = dimk t
∗
R = dimk mR/(m

2
R,mΛ)

Suppose mR = (m1, · · · ,mn) be a minimal representation of mR (i.e. one requiring minimal mi’s). Then
the mi must be linearly independent and they must not be in m2

R.

Then mR/m2
R is a free Λ-module generated by exactly the elements m1, · · · ,mn. Quotienting by mΛ

shows that mR/(m
2
R,mΛ) is a k-vector space freely generated by m1, · · · ,mn. Then n is the dimension

of mR/(m
2
R,mΛ), and so n = t1.

Using the construction from proposition 5, we obtain a surjection from Λ[[X1, X2, · · · , Xd1 ]] ↠ R as
desired.

5.2 Obstruction Classes

We now define the notion of an obstruction class. Suppose φ : R1 → R0 is a surjective morphism of
elements in CΛ such that the kernel Kerφ is annihilated by mR1 . (This is similar to the condition of a
small morphism but we do not require the kernel to be principal and the rings need not be Artinian.)

Let ρ : Π → GLn(R0) be a lift of ρ̄. We want to find possible deformations Π → GLn(R1) that also lift
ρ. Suppose γ : Π → GLn(R1) is a set-map that lifts ρ. The obstruction measures how far away this set
map is from being a homomorphism of groups.

Since γ restricts to ρ upon mapping R1 → R0, it follows that γ must have form:

γ(g) = ρ(g) +Mg

for Mg ∈ Mn(Kerφ). If γ is a group homomorphism, then γ(gh) = γ(g)γ(h). Define the function:

c(g, h) = γ(gh)γ(h)−1γ(g)−1

Then γ is a homomorphism if and only if c(g, h) ≡ I. However, since we know that γ is a homomorphism
upon taking modulo Kerφ, we can write c(g, h) = I + d(g, h), where d(g, h) ∈ Mn(Kerφ), and γ is a
homomorphism if and only if d ≡ 0.

Note that Kerφ is annihilated by mR1
, so we can view it as an R1/mR1

-module, i.e a k vector space. Thus
if we let Π act on Mn(Kerφ) by conjugation of ρ̄, then it can be viewed as the G-module Ad(ρ̄)⊗kKerφ.

Lemma 30. d(g, h) ∈ Z2(Π,Ad(ρ̄)⊗Kerφ) is a 2-cocycle. Moreover, for any other set-valued function
γ′ lifting ρ to R1, the induced cocycle d′ differs from d by a 2-coboundary in B2(Π,Ad(ρ̄)⊗Kerφ).

Thus, there exists a lift of ρ of R1 if and only if the cohomology class given by d(g, h) is trivial. We call
O(ρ) the Obstruction class of ρ relative to R1 → R0.

Proof. We first try to simplify the expression of d. Note that since Kerφ ⊆ mR1 , it is annihilated by
itself and so MgMh = 0 for any g, h ∈ Π. Noting this, a quick calculation shows that if γ(g) = ρ(g)+Mg

then
γ(g)−1 = ρ(g)−1 − ρ(g)−1Mgρ(g)

−1

Substituting this into d(g, h) = γ(gh)γ(h)−1γ(g)−1 − I and using the fact that ρ is still a group homo-
morphism, we obtain the expression:

d(g, h) = (ρ(gh) +Mgh)(ρ(h)
−1 − ρ(h)−1Mhρ(h)

−1)(ρ(g)−1 − ρ(g)−1Mgρ(g)
−1)− I

= Mghρ(h)
−1ρ(g)−1 − ρ(gh)ρ(h)−1Mhρ(h)

−1ρ(g)−1 − ρ(gh)ρ(h)−1ρ(g)−1Mgρ(g)
−1

= Mghρ(gh)
−1 − ρ(g)Mhρ(gh)

−1 −Mgρ(g)
−1

Note that since d ∈ Mn(Kerφ) is annihilated by mR1 , the conjugation action by ρ̄(g) is simply the same
as the conjugation action by ρ(g). Thus:

g1 · d(g2, g3) = ρ(g1)(Mg2g3ρ(g2g3)
−1 − ρ(g2)Mg3ρ(g2g3)

−1 −Mg2ρ(g2)
−1)ρ(g1)

−1

= ρ(g1)Mg2g3ρ(g1g2g3)
−1 − ρ(g1g2)Mg3ρ(g1g2g3)

−1 − ρ(g1)Mg2ρ(g1g2)
−1
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On the other hand:

d(g1g2, g3)− d(g1, g2g3) + d(g1, g2)

=(Mg1g2g3ρ(g1g2g3)
−1 − ρ(g1g2)Mg3ρ(g1g2g3)

−1 −Mg1g2ρ(g1g2)
−1)

− (Mg1g2g3ρ(g1g2g3)
−1 − ρ(g1)Mg2g3ρ(g1g2g3)

−1 −Mg1ρ(g1)
−1)

+ (Mg1g2ρ(g1g2)
−1 − ρ(g1)Mg2ρ(g1g2)

−1 −Mg1ρ(g1)
−1)

=ρ(g1)Mg2g3ρ(g1g2g3)
−1 − ρ(g1g2)Mg3ρ(g1g2g3)

−1 − ρ(g1)Mg2ρ(g1g2)
−1

Thus comparing terms, we have that g1 · d(g2, g3) = d(g1g2, g3)− d(g1, g2g3) + d(g1, g2), and so d defines
a 2-cocyle.

On the other hand, suppose γ′ is a different lift of ρ, then γ(g) = ρ(g) + M ′
g for a different M ′

g ∈
Mn(Kerφ). Then letting Ng = Mg −M ′

g, we have that:

d(g, h)− d′(g, h) = Nghρ(gh)
−1 − ρ(g)Nhρ(gh)

−1 −Ngρ(g)
−1

= gψ(h)− ψ(gh) + ψ(g)

Where we define ψ ∈ C1(G,Ad(ρ̄)⊗Kerφ) by g (→ Ngρ(g)
−1. Thus the map d changes by a co-boundary

when you change the lift γ.

Thus, d gives a cohomology class in O(ρ) ∈ H2(Π,Ad(ρ̄)⊗Kerφ) ∼= H2(Π,Ad(ρ̄))⊗Kerφ, and a lift of
ρ exists if and only if O(ρ) = 0. As desired.

In general these obstruction classes are hard to calculate, but a special case is if the second homology
H2(Π,Ad(ρ̄)) is trivial, in which case the obstruction class must be zero and so a lift exists. In this case
it is in fact very easy to compute the deformation ring:

Theorem 31. Let di = dimHi(Π,Ad(ρ̄)), and suppose that Ck(ρ̄) = k and R = R(Π, k, ρ̄) is the
universal deformation ring representing DΛ. Then we have:

Krull dim(R/mΛR) ≥ d1 − d2

Moreover, if d2 = 0 (i.e. the second cohomology is trivial), then the above inequality is in fact an equality,
and

R ∼= Λ[[X1, X2, · · · , Xd1 ]]

Proof. From corollary 29 we know that there is a surjective homomorphism Λ[[X1, X2, · · · , Xd1 ]] ↠
R, and this homomorphism induces an isomorphism of tangent spaces. Define F to be the ring
Λ[[X1, X2, · · · , Xd1

]]/mΛ = k[[X1, X2, · · · , Xd1
]] and let J be the kernel of the morphism F = k[[X1, X2, · · · , Xd1

]] ↠
R/mΛR, then we have an exact sequence:

0 → J → F → R/mΛR → 0

Since mFJ ⊆ J , we can further quotient to get the exact sequence of k-vector spaces:

0 → J/mFJ → F/mFJ → R/mΛR → 0

Let d = dimk J/mFJ be the dimension of dimk J/mFJ as a vector space. Fix a basis of this vector space
and let j1, j2, · · · , jd ∈ J be a lift of the basis to J , then if I is the ideal in F generated by the ji’s, then
we have that J = I + mFJ . By Nakayama’s lemma, I = J and so J is generated by the d elements
j1, · · · , jd.
Since R/mΛR ∼= F/J , and F = k[[X1, · · · , Xd1 ]] has krull dimension d1. By a theorem in commutative
algebra, quotienting by an ideal of d elements decreases the Krull dimension by at most d. Thus we have

Krull dim(R/mΛR) ≥ d1 − d = d1 − dimk(J/mFJ)

Thus it suffices to prove that d2 ≥ dimk(J/mFJ).
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Let ρp be the composition of the universal deformation with the quotient map R → R/mΛR, by the
universal property of quotients, deformations to any Λ-algebra that where mΛ is sent to zero factors
uniquely though ρp, or in other words ρp is universal amongst k-algebras.

We consider the obstruction of lifting ρp to F/mFJ , which is the cohomology classO(ρp) ∈ H2(Π,Ad(ρ̄))⊗
J/mFJ . We define the k-linear map:

α : Homk(J/mFJ, k) → H2(Π,Ad(ρ̄))⊗ J/mFJ

f (→ (1⊗ f)O(ρp)

So it suffices to prove that the map α is injective. Suppose f ∈ Kerα be non-zero, andA = (F/mFJ)/Ker f
be the quotient of F/mFJ by the kernel of f , and also define I = (J/mFJ)/Ker f = Im f = k. Then we
get the exact sequence:

0 → I → A → R/mΛR → 0

This still induces an isomorphism of tangent spaces, but since we quotiented by the kernel of f , the
obstruction class of lifting ρp to A is now trivial.

Thus we must have a lift of ρp to the ring A. Since A is a k-algebra, by the universal property of ρp this
lift must be induced by a homomophism R → A that factors through R/mΛR, so we get a lift induced
by a homomorphism R/mΛR → A. Thus by the split-exact sequence lemma the above exact sequence
splits, and A ∼= R/mΛR ⊕ I. However, I being nonzero contradicts the fact that the tangent spaces of
A and R/mΛR are isomorphic. Thus the image of f cannot be non-zero. i.e. Kerα = 0, thus proving
d2 ≥ dimk(J/mFJ) and Krull dim(R/mΛR) ≥ d1 − d2.

Finally, if d2 = 0, this means that J has at most 0 generators. This in turn implies that the kernel of
the map Λ[[X1, · · · , Xd1

]] → R has kernel 0, which implies

R ∼= Λ[[X1, · · · , Xd1
]]

Before we continue we need more group theory:

5.3 More Group Theory

This section will be a miscellaneous collection of group theoretical results which we will need in the next
subsection.

Lemma 32. Γn(R) is a pro-p group for any R ∈ C .

Proof. Using the fact that Γn(R) can be written as the profinite limit:

Γn(R) = lim
←−

Γn(R/mr
R)

It suffices to show that Γn(R/mr
R) is a p-group for each k. We induct on r.

When k = 1 we know that Γn(R/mR) = {I} is a p-group. Now suppose Γn(R/mr−1
R ) is a p-group and

consider the transition map:
Γn(R/mr

R) → Γn(R/mr−1
R )

This map is surjective and by our induction hypothesis the image is a p-group. It suffices to show that
kernel of the map is also a p-group. Any element in the kernel must reduce to the identity matrix upon
taking mod mr−1

R , thus must have form I +M for M ∈ Mn(m
r
R/m

r−1
R ). So there is a bijection between

the kernel of the map to the set Mn(m
r
R/m

r−1
R ). Since mr

R/m
r−1
R is a finite dimensional k-vector space,

it follows that Mn(m
r
R/m

r−1
R ) has order a power of p, so the map has kernel a p-group.
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We state without proof the following theorems:

Theorem 33 (Schur-Zassenhaus [Rob96]). Let G be a profinite group with a normal pro-p Sylow
subgroup P such that P has finite index in G and is topologically finitely generated (i.e. P has a dense
open subgroup that is finitely generated). Let π : G → G/P be the quotient map. Then there exists
a subgroup A ≤ G such that π induces an isomorphism A ∼= G/P . Furthermore any other A′ ≤ G
satisfying this property is conjugate to A by an element of P .

In particular, this also implies that G = P ⋊A is the semidirect product of A and P .

Theorem 34 (Burnside’s Basis Theorem). Let G and P be as the previous theorem. Let P̄ be the
maximal p-elementary abelian quotient of P (i.e. the maximal quotient of P such that P̄ is abelian and
every element has order p). Note that P̄ is a Fp-vector space.

If x1, · · · , xd ∈ P and their images under P → P̄ generate P̄ as a vector space, then the elements
x1, · · · , xd generate a dense subgroup of P .

Lemma 35. Let P be a pro-p group and P̄ the maximal p-elementary abelian quotient. Given two A-
actions A → AutP that restrict to the same map A → Aut P̄ upon quotienting, the semidirect products
of P and A induced by these two actions are isomorphic.

We now prove:

Proposition 36 ([Bos91]). Let G,A, P, P̄ be as the above theorems. Since P, P̄ is normal, let A act on
P and P̄ by conjugation, making them into A-modules.

If V̄ is a Fp[A]-submodule of P̄ (i.e. V̄ is a vector subspace of P̄ that is closed the A-action), then
there exists an A-invariant subgroup V of P with dimFp V̄ generators which maps onto V̄ via the map
π : G → G/P .

Proof. We first prove the case in which P is a free pro-p group. So P is the pro-p completion of the free
group.

Let F be the free pro-p group with dim V̄ generators, with the generators of F abstractly identified with
a basis of V̄ , so that there is a surjection F → V . Since there is an A action A → Aut(V̄ ), we can lift
this to an A-action on F .

Let Ū be a Fp[A]-module complement of V̄ in P̄ , and let G be the free pro-p group with dim Ū generators.
We repeat the same construction as above to obtain an A-action on G.
Then since there is an A-action on the both F and G, there is an A-action on the free product F ∗G. Since
P is also a free pro-p group by assumption, F ∗ G ∼= P . By our construction the maximal p-elementary
abelian quotient of F ∗G is P̄ and the A-action on this quotient is the same as the A-action on P̄ given by
quotienting P . This implies that the semidirect product of F ∗ G and A is isomorphic to the semidirect
product of P and A by lemma 35. Then taking V to be the image of F under this isomorphism, V is
A-invariant with the correct number of generators, and it maps onto V̄ as desired.

Now suppose P is a general pro-p group. Let F → P be a surjective homomorphism from a free pro-p
group F with dim P̄ generators. Let R be the kernel of the surjection and denote by AutR F the the
automorphisms of F that fix R.

We will show the map AutR F → AutP induced by φ : F ↠ P is surjective. Fix a generating set
g1, · · · , gr of P . Let f1, · · · , fr be a generating set of F that maps to this generating set of P under φ.
For any automorphism α : P → P , let e1, · · · , er be the images of g1, · · · , gr via α, and h1, · · · , hr be lifts
of ei via φ. Then the map F → F given by fi (→ hi is surjective, since the elements hi are independent
in the vector space P̄ by Burnside’s basis theorem. This map induces an isomorphism on the maximal
p-elementary abelian quotient F̄ . Thus by Burnside’s basis theorem, this is also an isomorphism on F .
R is fixed under this map since it maps to zero in P , so this is an element of AutR F that restricts to α,
so the map is surjective.

In particular, for an A-action A → AutP , we can lift this to an A-action A → AutR F . By our first
case, F contains a closed subgroup J that is free on the generators of V̄ ≤ P̄ , and is invariant by this
A-action. Then the image of J in P gives us our desired V̄ .

Definition. Suppose H ≤ GLn(k) be a subgroup whose order is coprime to p. Then any k[H]-module
decomposes into a direct sum of irreducible k[H]-modules by Maschke’s theorem.
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Give Mn(k) a k[H]-module structure through conjugation by elements in H, and call this module M . Let
V be another k[H]-module, then V is prime-to-adjoint if V andM have no irreducible sub-representations
in common.

5.4 More Galois Theory

For this section assume p > 2. Let K/Q be be a number field and let H = Gal(K/Q). Let S0 be a finite
set of primes in Q containing p and the infinity, and let S be the set of primes in K that lie above S0.
Let L be the maximal pro-p extension of K that is unramified outside S, and let P = Gal(L/K).

Let r2 be the number of complex places of K, and for F a field, define the function:

δ(F) =

)
0 F contains a primitive p-th root of unity

1 otherwise

Let Kv be the completion of K at the place v. Define ZS to be the set of nonzero elements x ∈ K such
that the fractional ideal (x) is a pth power when factored into prime ideals (this makes sense because
prime ideal factorisation in number fields is unique) and x is a p-th power in each completion Kv for
v ∈ S.

In particular, ZS contains (K×)p, the set of all p-th powers in K. Note that the sets ZS and (K×)p are
stable under the Galois action by H = Gal(K/Q) since images of p-th powers under field automorphisms
are still p-th powers. Thus we can think of the sets ZS and (K×)p as Fp[H]-modules, and let BS denote
the quotient Fp[H]-module ZS/(K

×)p, which is in particular also a Fp-vector spaces.

We now quote the following theorem:

Theorem 37 ([Koc70]). Let d(P ) and r(P ) denote the generator rank and relation rank (i.e. the minimal
number of generators and relations needed to define P as a pro-p group) of P , then the following two
identities hold:

r(P ) =

*
&

v∈S

δ(Kv)

+
− δ(K) + dimFp

Bs

d(P ) = r2 + 1 + r(P )

In particular, this implies that P is topologically finitely generated (it has a dense open subgroup that
is finitely generated).

We further make the following definitions. Let Ē = K×/(K×)p denote the units in K modulo pth
powers, and define Ēv = K×

v /(K×
v )p similarly. We quote a result from global class field theory:

Theorem 38. Suppose the class number of K is not divisible by p, then we have the following exact
sequence of Fp[H]-modules: [Bos91]

0 → BS → Ē →
,

v∈S

Ēv → P̄ → 0

For each prime l ∈ Q, let Hl ≤ H the decomposition subgroup at a prime lying above l (i.e. Hl is the
subgroup of H that fixes the prime ideal l, for l an ideal of K that lies above l. This group is unique
up to conjugation.). Furthermore let H∞ be the subgroup of H generated by a complex conjugation.
Finally let µp(K) be the group of pth roots of unity in K. Then we state this following theorem:

Theorem 39 ([BM89]). As Fp[H]-modules, if the order of H is not divisible by p, then we have the
following isomorphisms:

,

v∈S

Ēv
∼= Fp[H]⊕

*
,

l∈S0

IndHHl
µp(Kl)

+

Ē ⊕ Fp
∼= µp(K)⊕ IndHH∞

Fp
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Where Ind refers to the induced representation. And Kl refers to the field Kvl
, for any choice of vl ∈ S

which lies above l. The choice of vl does not matter because the induced module will be isomorphic
regardless of choice.

We also state without proof:

Theorem 40 ([Bos91]). For R ∈ C , let X be a finitely generated subgroup of Γn(R), and let A be a
subgroup of GLn(R) that fixes X under conjugation. Then if the maximal p-elementary quotient X̄ is
prime-to-adjoint as a Fp[A] module, then X is trivial.

5.5 Dimension bounds for Galois Groups over Number Fields

We return to deformations of representations, and finally, we specialise Π to be a Galois Group. Fix
a number field K and S a finite set of primes that contains all primes above p and primes at infinity.
Define also S∞ ⊆ S to be the set of primes at infinity. Let Π = GK,S , and for a prime v of K, we write
Kv to be the completion of K with respect to v.

We first state without a proof a corollary of the global Euler characteristic formula, and a reference of
this can be found in section I.5 in [Mil06]:

Theorem 41. Let M be a GK,S-module and d = [K : Q], then:

dimH0(GK,S ,M)− dimH1(GK,S ,M) + dimH2(GK,S ,M) =
&

v∈S∞

dimH0(GKv
,M)− d dimM

In particular if M = Ad(ρ̄) we have that:

d0 − d1 + d2 =
&

v∈S∞

dimH0(GKv
,Ad(ρ̄))− dn2

An immediate corollary is the following:

Corollary 42.

Krull dim(R/mΛR) ≥ 1 + dn2 −
&

v∈S∞

dimH0(GKv
,Ad(ρ̄))

Proof. This follows from Theorem 31 and the fact that H0(Π,Ad(ρ̄)) = Ad(ρ̄)Π is the elements of Mn

that commute with the image of Π. This is precisely Ck(ρ̄) = k, so d0 = 1. Substituting and rearranging
gives:

Krull dim(R/mΛR) ≥ d1 − d2 = 1 + dn2 −
&

v∈S∞

dimH0(GKv ,Ad(ρ̄))

5.6 Tame Representations

This section mostly follows the exposition given in [Bos91].

Let K = Q and Π = GQ,S = Gal(QS/Q). Suppose we have an absolutely irreducible residual represen-
tation ρ̄ : Π → GLn(k). We define Π0 = Ker(ρ̄), and let K = QΠ0 be the field fixed by Π0. Let S1 be
the set of primes of K that lie above primes in S.

If ρ : Π → GLn(R) is the universal deformation of ρ̄, then note that since Π0 maps to the identity under
ρ̄, the image of Π0 under the lift ρ must restrict to the identity. In other words:

ρ(Π0) ⊆ Γn(R)

and ρ gives induces a homomorphism Π0 → Γn(R) by restriction.

By the universal property of pro-p quotients, the map Π0 → Γn(R) must factor through a pro-p quotient
of Π0.
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Let L be the maximal pro-p extension of K that is unramified outside of the set of primes S1, and define
P = Gal(L/K) (i.e. L is the maximal extension of K such that the P is pro-p). By the definition of L
we have that P is the maximal pro-p-quotient of Π0 then map ρ|Π0 : Π0 → Γn(R) factors through P
uniquely. Looking at our original map, this implies that ρ : Π → GLn(R) must uniquely factor through
Π̃ = Gal(L/Q).

We have the following diagram indicating inclusion of fields with corresponding Galois groups labelled
on the edges:

QS

L

K = QΠ0

Q

Ker ρ̄=Π0

P

Im ρ̄=Π/Π0

Π̃

Since we have shown that the universal deformation ρ factors through the group Π̃, also called the p-
completion Π relative to ρ̄. This implies that in order to study the deformations of ρ̄ : Π → GLn(k), it is
in fact enough to restrict this residual representation to the group Π̃ and only consider ρ̄ : Π̃ → GLn(k).
By our construction we know that Π̃/P ∼= Im(ρ̄).

We now define the notion of a tame represenation.

Definition. A residual representation ρ̄ : Π → GLn(k) is tame if the order of Im(p) is not divisible by
p.

Write H = Im(ρ̄) = Π̃/P and suppose ρ̄ is a tame representation. In this case P is a maximal pro-p
subgroup of Π̃, i.e. it is a Sylow pro-p subgroup. Thus we can apply theorem 33 (the Schur-Zassenhaus
theorem) and obtain that there is a subgroup A ≤ Π̃ that is isomorphic to H, and Π̃ = P ⋊A.

We know that Γn(W (k)) is a pro-p group from lemma 32. Let G ≤ GLn(W (k)) be the preimage of
Im(ρ̄) under the projection map GLn(W (k)) → GLn(k), and consider the projection map restricted to
G, i.e the map G → Im(ρ̄). This map is surjective and has kernel a subgroup of Γn(W (k)) which is
pro-p. Since the image of the map is not divisible by p, it means that the this kernel is a Sylow pro-p
subgroup of G. This means we can apply theorem 33 again and G contains a subgroup H1 isomorphic
to H = Im(ρ̄).

Since G ≤ GLn(W (k)), this means that GLn(W (k)) contains a subgroup H1 that is isomorphic to H.
Since ρ̄ has image H, there is clearly a lift ρ1 lifting ρ̄ to W (k) simply by identifying H = Im(ρ̄) with
the subgroup H1 of GLn(W (k)).

Thus we have a lift:
ρ1 : Π̃ → GLn(W (k))

That induces an inclusion σ : A ↩→ GLn(W (k)), sending A to H1.

Proposition 43. Any other lift of ρ̄ to W (k) is strictly equivalent to ρ1, and σ is also unique up to
conjugation by Γn(W (k)).

Proof. Suppose ρ′1 : Π̃ → GLn(W (k)) is another lift of ρ̄. Then we have a map Im(ρ′1) → Im(ρ̄) via
restricting the domain of the map GLn(W (k)) → GLn(k), and moreover Im(ρ′1) ≤ G. This map has
kernel a subgroup of Γn(W (k)) and is thus a p group, and again, since the image of the map has order
not divisible by p, the kernel of this image is a Sylow pro-p subgroup of Im(ρ′1) ≤ G. Applying the
Schur-Zassenhaus theorem again there must be a subgroup of Im(ρ′1) isomorphic to H. This is also a
subgroup of G, and Schur-Zassenhaus states any two such groups must be conjugate by an element of
the Sylow pro-p subgroup of G. Thus the restriction of A in ρ1 and ρ′1 differ by a conjugation by an
element in Γn(W (k)). Since all homomorphisms also need to be continuous, this means that ρ1 and ρ′1
must also differ by a conjugation in Γn(W (k)) and they are thus strictly equivalent lifts.
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Since we know that C = CW (k), every ring R ∈ C has a canonical W (k) algebra structure given by a
homomorphism W (k) → R. Thus by composing σ by this map, we have a homomorphism σR : A →
GLn(R).

From earlier this section we know that every deformation of ρ̄ : Π̃ → GLn(k) to R induces a homomor-
phism from P = Ker ρ̄ → Γn(R). Note that A acts on P via conjugation since P is a normal subgroup
of Π̃. On the other hand, A acts on Γn(R) through conjugation by σR. So both P and Γn(R) have
A-actions, it makes sense to ask which continuous homomorphisms P → Γn(R) commute with this A
action. We define the set-valued functor Eρ̄ : C → Sets to be precisely these homomorphisms:

Eρ̄(R) = HomA(P,Γn(R))

Since Π̃ = P ⋊ A, any deformation Π̃ → GLn(R) is determined by where it sends P and A, as long as
the map from P to GLn(R) respects the A action on P .

In other words, given an element of Eρ̄, this combined with the map σR specifies a lift Π̃ → GLn(R).
Thus there is a natural morphism of functors Eρ̄ → Dρ̄. We now state a theorem from [Bos91]:

Theorem 44. If Ck(ρ̄) = k, then the natural morphism Eρ̄ → Dρ̄ is in fact an isomorphism.

Proof. We wish to show that for an arbitrary R ∈ C , the induced map Eρ̄(R) → Dρ̄(R) is a bijection.

We first show that the map is surjective. Let [ρ] ∈ Dρ̄(R) be a deformation of ρ̄. Then ρ restricts
to a map A → GLn(R). By the above proposition, this map is conjugate to the map σR. So without
loss of generality, pick a representative ρ of the strict equivalence class [ρ] such that the induced map
A → GLn(R) is precisely the map σR. But in this case, since the induced map is σR, by restricting ρ
to the subgroup P , we have a map that is compatible with the A-action on P and Γn(R). Thus ρ|P is
precisely an element in Eρ̄(R), and this exactly maps to the strict equivalence class [ρ].

Now we show that this is an injective map. Suppose φ1,φ2 ∈ Eρ̄(R) and induce lifts ψ1,ψ2 ∈ Dρ̄(R).
Both ψ1 and ψ2 will induce the map σ : A → GLn(W (k)) on A, this means that the element that ψ1

and ψ2 are conjugate through a matrix in Γn(R) that fixes A under conjugation. In other words, it must
commute with the image of A.

On the other hand, the homomorphisms P → Γn(R) commute with the A-action, and so since Ck(ρ̄) = k
consists of only scalar matrices, the maps ψ1 and ψ2 must be conjugate by a scalar matrix. This means
that ψ1 = ψ2, and by restricting the maps to P , we have that φ1 = φ2.

This is useful because if we can find a ring that represents Eρ̄, then this ring must also represent Dρ̄.

Theorem 45. The functor Eρ̄ is representable.

Proof. Pick generators x1, x2, · · ·xd of P , then the image of xr in Γn(R) has the form I + Mr for

Mr ∈ Mn(mR). Let Mr have entries M = (m
(r)
ij )1≤i,j≤n.

Let F be the pro-p completion of the free group with generators x1, x2, · · · , xd. Then there exists a
surjection F → P with kernelN , In this case, there is a bijective correspondence between homomorphisms
P → Γn(R) and homomorphisms F → Γn(R) where N is contained in the kernel.

Consider the power series ring in dn2 variables W (k)[[T
(r)
ij ]]1≤r≤d;1≤i,j≤n = W (k)[[T

(1)
11 , · · · , T (d)

nn ]]. We

define a homomorphism F → Γn(W (k)[[T
(r)
ij ]]) which sends:

xr (→ I + (T
(r)
ij )

Requiring that N is in the kernel is simply imposing a number of linear equations on T
(r)
ij , and similarly

the requirement that the A-actions commute with P → Γn(R) is also just imposing a number of linear

conditions. Let I be the ideal generated by these conditions and define R = W (k)[[T
(r)
ij ]]/I.

These conditions give rise to a homomorphism F → Γn(R) which has kernel N , and thus gives a
homomorphism P → Γn(R) which respects the A-action. This is universal, since any other function
P → Γn(R) would uniquely factor through a map F → R, and thus uniquely give a ring map R → R.
Thus the ring R represents the functor Eρ̄.
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Since the functors Eρ̄ and Dρ̄ are isomorphic, this implies that the their tangent spaces are isomorphic
too. Eρ̄ has tangent space:

tEρ̄ = Eρ̄(k[ε]) = HomA(P,Γn(k[ε]))

As noted in theorem 22, Γn(k[ε]) has elements of the form I +Nε for N ∈ Mn(k) and multiplying two
elements in Γn(k[ε]) corresponds to adding in Mn(k). Moreover, the conjugation by A action commutes
with the correspondence between Γn(k[ε]) and Mn(k). Thus Γn(k[ε]) and Ad(ρ̄) are isomorphic as A
modules. Thus

HomA(P,Γn(k[ε])) = HomA(P,Ad(ρ̄))

But since theorem 22 also stated that Γn(k[ε]) = Ad(ρ̄) is p-elementary abelian, so any A-morphism
P → Ad(ρ̄) factors uniquely through P̄ , the maximal p-elementary abelian quotient of P . Thus:

HomA(P,Ad(ρ̄)) = HomA(P̄ ,Ad(ρ̄))

In particular, we now know that:

Lemma 46.
dimk tDρ̄ = dimk tEρ̄ = dimk HomA(P̄ ,Ad(ρ̄))

Since the order of A is not divisible by p, by Maschke’s Theorem, both P̄ and Ad(ρ̄) can be decomposed
as a sum of irreducible A-modules. This means that if we compute the decomposition of the two modules,
then the dimension of the tangent space can be determined by the irreducible A-modules that appear in
both the decompositions (by Schur’s lemma, any morphism between irreducible representations is either
zero or an isomorphism).

5.7 Explicit Deformations in a Special Case

Definition. Let n = 2 and p be an odd prime. Suppose σ ∈ GQ,S be the complex conjugation automor-
phism. Then σ2 = Id and since p is an odd prime, ρ̄(σ) is a matrix of order 2 in GL2(k).

We say ρ̄ is odd if det ρ̄(σ) = −1 and even if det ρ̄(σ) = +1.

We state the final result of this essay:

Theorem 47 ([Bos91]). Let p be an odd prime and suppose that ρ̄ : GQ,S → GL2(Fp) is tame, odd, and
absolutely irreducible. Recall that and K be the field fixed by Ker ρ̄, and H = Im(ρ̄) and P = Gal(L/K),
and define:

V = coker

*
µp(K) →

,

v∈S

µp(Kv)

+

And let B = BS = ZS/(K
×)p. Then both V and B are Fp[H]-modules. Suppose that the class number

of K is not divisible by p and V and B have no common irreducible factors with Ad(ρ̄) when decomposed
into irreducible Fp[H]-modules. Then:

Rρ̄
∼= Zp[[T1, T2, T3]]

The rest of this section will work towards a proof of this theorem. So for the remainder of the section
assume that the hypothesis of the above theorem is true.

The main idea of the proof is to show that the dimension d1 of the tangent space is equal to 3, and use
the identity from the Global Euler Characteristic Formula (Theorem 42) to show that the deformation
problem is unobstructed (i.e. d2 = 0). From this we conclude using Theorem 31 that the universal
deformation ring must be the power series ring in 3 variables over Zp, R ∼= Zp[[T1, T2, T3]].

To simplify notation, for M a H-module we write:

D(M) := dimHomH(M,Ad ρ̄)

From lemma 46 we have shown that the dimension of the tangent space is in fact equal to the dimension
of dimk tEρ̄ = dimk HomH(P̄ ,Ad(ρ̄)) = D(P̄ ), so we will compute that now. The main idea will be
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that the hypothesis of V and B being prime-to-adjoint will imply that many terms of this dimension
calculation will go to zero.

Then in order to calculate the dimension of the tangent space, we wish to compute D(P̄ ). We prove a
series of lemmas:

Lemma 48. We have an identity:

D
'
P̄
(
= D (Fp[H]) +D

*
,

l∈S0

IndHHl
µp(Kl)

+
−D (µp(K))−D

-
IndHH∞

Fp

.
+D (Fp)

Proof. We first use the exact sequence given in theorem 38:

0 → BS → Ē →
,

v∈S0

Ēv → P̄ → 0

Since BS is prime to adjoint, we know that HomH(BS ,Ad(ρ̄)) = 0, so using the exact sequence we have
an identity on dimensions:

dimHomH(P̄ ,Ad(ρ̄)) = dimHomH

*
,

v∈S0

Ēv,Ad(ρ̄)

+
− dimHomH(Ē,Ad(ρ̄)) (.)

The key observation is that dimension of homomorphisms between H-modules is bilinear over direct
sums of the modules. i.e.

dimHomH(X1 ⊕X2, Y ) = dimHomH(X1, Y ) + dimHomH(X2, Y )

dimHomH(X,Y1 ⊕ Y2) = dimHomH(X,Y1) + dimHomH(X,Y2)

We apply this to the two decompositions of modules from theorem 39 to obtain the following identity
on dimensions:

D
*
,

v∈S

Ēv

+
= D (Fp[H]) +D

*
,

l∈S0

IndHHl
µp(Kl)

+

D
'
Ē
(
+D (Fp) = D (µp(K)) +D

-
IndHH∞

Fp

.

Substituting these two identities into (.), we obtain:

D
'
P̄
(
= D (Fp[H]) +D

*
,

l∈S0

IndHHl
µp(Kl)

+
−D (µp(K))−D

-
IndHH∞

Fp

.
+D (Fp)

As desired.

So we have decomposed D(P̄ ) into a sum of dimensions of modules, and we will now compute these
terms separately:

Lemma 49.
D(Fp[H]) = dimHomH(Fp[H],Ad(ρ̄)) = 4

Proof. Note that Fp[H] is the regular representation of H, and from a result in representation theory, the
multiplicity of an irreducible module in the regular representation is just the dimension of the irreducible
module. But then for any H-module X we can simply decompose X into irreducible submodules X =
X1 ⊕ · · ·⊕Xr and we have:

dimHomH(Fp[H], X) =

r&

i=1

dimHomH(Fp[H], Xi) =

r&

i=1

dimXi = dimX

Thus this implies:
dimHomH(Fp[H],Ad(ρ̄)) = dimAd(ρ̄) = 4
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Lemma 50.
D
-
IndHH∞

Fp

.
= dimHomH

-
IndHH∞

Fp,Ad(ρ̄)
.
= 2

and
D (Fp) = dimHomH (Fp,Ad(ρ̄)) = 1

Proof. Let σ be the complex conjugation in GQ,S . Through a change of basis, we can assume without
loss of generality that

ρ̄(σ) =

/
1 0
0 −1

0

We can pick the following basis for the representation Ad(ρ̄):

/
1 0
0 1

0
,

/
1 0
0 −1

0
,

/
0 1
0 0

0
,

/
0 0
1 0

0

And the conjugation action of ρ̄(σ) scales the 4 basis matrices by 1, 1,−1,−1 respectively.

By Frobenius reciprocity we have the following identity:

dimHomH

-
IndHH∞

Fp,Ad(ρ̄)
.
= dimHomH∞

'
Fp,Res

H
H∞

Ad(ρ̄)
(
= dimFp Ad(ρ̄)H∞

Since H∞ is the subgroup of H generated by complex conjugation, and the action of ρ̄(σ) fixes exactly
2 of the basis matrices of Ad(ρ̄). This implies that

D
-
IndHH∞

Fp

.
= dimFp Ad(ρ̄)H∞ = 2

On the other hand, since Ck(ρ̄) = k, the only matrices in Ad ρ̄ fixed under the H-action are the scalar
matrices, so we conclude that:

D (Fp) = dimHomH (Fp,Ad(ρ̄)) = 1

Lemma 51.

D
*
,

l∈S0

IndHHl
µp(Kl)

+
−D (µp(K)) = 0

Proof. The proof of this lemma uses the fact that

V = coker

*
µp(K) →

,

v∈S

µp(Kv)

+

is a prime-to-adjoint module.

We first make sense of how to interpret
,

v∈S

µp(Kv) as an H-module. First we fix a prime l ∈ S0 and

consider the the direct sum over all primes v ∈ S which lie over l of µp(Kv). Then given an element
h ∈ H, the action of h is simply to permute the summands around, sending µp(Kv) (→ µp(Kh(v)). Thus
for a fixed l, we have that is an H-module.

On the other hand, the induced module IndHHl
µp(Kl) is a direct sum of gi ⊗ µp(Kl) over a transversal

g1, · · · , gs of Hl. It can be shown that we have an isomorphism of H-modules:

IndHHl
µp(Kl) ∼=

,

v|l

µp(Kv)

Taking the direct sum over all primes l ∈ S0, we have the isomorphism:

,

l∈S0

IndHHl
µp(Kl) ∼=

,

l∈S0

,

v|l

µp(Kv) ∼=
,

v∈S

µp(Kv)
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Consider the map ϕ : µp(K) →
,

v∈S

µp(Kv). The inclusion µp(K) ↩→ µp(Kv) is clearly injective, so this

implies that ϕ is injective and so Imϕ ∼= µp(K).

Finally we note that the cokernel V is the codomain of ϕ quotiented by its image. So we have an exact
sequence:

0 → µp(K) →
,

v∈S

µp(Kv) → V → 0

But using the fact that V is prime-to-adjoint, we conclude:

0 = D(V )

= D
*
,

v∈S

µp(Kv)

+
−D(µp(K))

= D
*
,

l∈S0

IndHHl
µp(Kl)

+
−D(µp(K))

As desired.

Now we show that this deformation problem has trivial obstruction:

Lemma 52. Under the hypotheses stated at the start of this subsection:

d1 − d2 = 3

Proof. From the corollary of the global Euler characteristic formula (Corollary 42) we have that:

d1 − d2 = 1 + dn2 −
&

v∈S∞

dimH0(GQv
,Ad(ρ̄))

= 1 + 4− dimH0(H∞,Ad(ρ̄))

Note that we substituted d = 1, n = 2 since we are looking at 2 dimensional representations of GQ,S ,
and the sum over infinite places in the original formula has been replaced by a single term, since there
is only one infinite place in Q.

We know that the zeroth cohomology H0(H∞,Ad(ρ̄)) = Ad(ρ̄)H∞ is simply the elements in Ad(ρ̄) which
are fixed by the group H∞.

By the proof of lemma 50 we have shown that H∞ fixes a dimension 2 subspace of Ad(ρ̄).

Thus dimH0(H∞,Ad(ρ̄)) = dimAd(ρ̄)H∞ = 2. And we conclude that

d1 − d2 = 1 + 4− 2 = 3

Finally we can conclude the section by finishing the proof to Theorem 47:

Proof of Theorem 47. We substitute the dimension calculations from lemmas 49, 50, and 51 into the
identity given in lemma 48:

d1 = dimHomH(P̄ ,Ad(ρ̄))

= D
'
P̄
(

= D (Fp[H]) +D
*
,

l∈S0

IndHHl
µp(Kl)

+
−D (µp(K))−D

-
IndHH∞

Fp

.
+D (Fp)

= 4 + 0− 2 + 1

= 3
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But by lemma 52 we know that d1 − d2 = 3. Since d2 is non-negative, this implies that d2 = 0.

Finally we conclude from Theorem 31 that the deformation ring is simply equal to the power series ring
in d1 variables:

R ∼= Zp[[T1, T2, T3]]

6 Conclusion

Over this essay we proved the existence of the Universal Deformation Ring following Mazur’s paper, and
deduced some properties of the Universal Deformation Ring via the tangent space of the deformation
functor. We also computed the Universal Deformation Ring in several specific cases.

One of the hypotheses required in the statement of theorem 47 is that V and B has to be prime-to
adjoint. While this condition greatly simplified the computation of the dimension of the tangent space,
the condition imposed does seem a bit artificial. A natural next step would be to attempt to find residual
representations ρ̄ which indeed satisfy the hypotheses.
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